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We consider the model of a 2D surface above a fixed wall and attracted toward 
it by means of a positive magnetic field h in the solid-on-solid (SOS) 
approximation when the inverse temperature fl is very large and the external 
field h is exponentially small in ft. We improve considerably previous results by 
Dinaburg and Mazel on the competition between the external field and the 
entropic repulsion with the wall, leading, in this case, to the phenomenon of 
layering phase transitions. In particular, we show, using the Pirogov-Sinai 
scheme as given by Zahradnik, that there exists a unique critical value h*(fl) in 
the interval (�88 -4#k, 4e -4#k) such that, for all h ~ (h*+ i, h~') and fl large enough, 
there exists a unique infinite-volume Gibbs state. The typical configurations 
are small perturbations of the ground state represented by a surface at height 
k +  1 above the wall. Moreover, for the same choice of the thermodynamic 
parameters, the influence of the boundary conditions of the Gibbs measure in 
a finite cube decays exponentially fast with the distance from the boundary. 
When h=h*(fl) we prove instead the convergence of the cluster expansion 
for both k and k + 1 boundary conditions. This fact signals the presence of a 
phase transition. In the second paper of this series we will consider a Glauber 
dynamics for the above model and we will study the rate of approach to equi- 
librium in a large finite cube with arbitrary boundary conditions as a function 
of the external field h. Using the results proven in this paper, we will show that 
there is a dramatic slowing down in the approach to equilibrium when the 
magnetic field takes one of the critical values and the boundary conditions are 
free (absent). 
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0. INTRODUCTION 

This is the first of a series of two papers (the second part is ref. 4) where the 
equilibrium and nonequilibrium properties of a two-dimensional interface 
above a fixed wall and attracted to it by means of a constant external field 
are studied in the so-called SOS approximation in the low-temperature 
regime. 

The equilibrium distribution of the model in a finite square V c Z  2 
with boundary conditions (b.c) {Ip(y)}y~Z:\v, inverse temperature fl, and 
magnetic field h is described by the following Gibbs measure: 

~(~o)  - Z*(--~ exp - Y'. I~o(x) - ~o(y)L 
x , ) ' ~  V; 

Ix - y l  = 1 

-/~h ~ ~(x)- ~ I~o(x)-r (o.1) 
d 

I x  - Yl = 1 

where Z*(V) is the associated partition function and the random variable 
~p(x) ~ 77+ represents the height of the surface at x ~ V above the wall. 

Although the study of the above Gibbs distribution is clearly relevant 
for the understanding of wetting phenomena (see, e.g., refs. 8 and 9) 
and, more generally, for the equilibrium and nonequilibrium statistical 
mechanics of two-dimensional interfaces, our main motivation originates 
from the study of the ergodic properties of Glauber-type dynamics for 3D 
discrete spins systems on the lattice, when the thermodynamic parameters 
fl and h are in the one-phase region of the phase diagram (see ref. 4 for 
more details). 

In this case, in fact, ergodicity has not yet been proved in full 
generality and a relevant question seems to be whether one should expect 
that the gap in the spectrum of the generator of the dynamics is strictly 
positive, uniformly in the volume and in the boundary conditions, in the 
whole one-phase region. 

A better understanding of the statictical behavior of the SOS surface 
~p provides a strong argument to settle this problem. Consider a 3D Ising 
model at low temperature fl-~ and positive magnetic field h in a large 
cube Q. When the b.c. are opposite to the stable plus phase present in the 
bulk, a thin layer of the minus phase separated from the plus bulk phase 
by a two-dimensional interface appears close to the boundary. Such an 
interface, at low enough temperature, should be well described by an SOS 
model with a hard wall and, as we explain in ref. 4 (see also below), its 
dynamical behavior seems to play a relevant role in the relaxation process 
for the whole system. 
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For the SOS model described by (0.1) and variants of it, it has long been 
realized (see, e.g., the important papers by Bricmont etal. ~) and Fr61ich 
and Pfister 18"91 and the more recent the work by Maes and Lebowitz, ~t31 
Bolthausen et al., ~3~ and Dinaburg and Maze116~ that the relevant statistical 
properties of the surface ~p are determined by the competition between the 
attraction to the wall due to the external field and the entropic repulsion 
due to the wall itself. In particular in ref. 6 (the basic reference for our 
work) it was shown for the first time that the above competition gives rise 
to the phenomenon of a "layering phase transition". 

T h e o r e m .  ~6) There exists flo such that for all fl>~flo there are positive 
numbers {h*(fl)} ~=1 with 

e-4ak-p/,oo ~< flh~(fl) <~ e--4flk+fl/lO0 

such that: 

(i) If h*([1)<h<h~_~(fl), then the set of the translation-invariant 
Gibbs measures for the interaction (0.1) has a unique element generated by 
the boundary condition k. 

(ii) If h=h~(fl), then the set of the translation-invariant extreme 
Gibbs measures has exactly two elements, generated by the boundary 
conditions k and k + 1 

What is actually proven in ref. 6 is only part (i) when h belongs to the 
restricted interval 

e--4ilk + fl/100 ~ flh <~ e--4fl(k- 1)-  fl/100 

while for the rest, an argument is sketched which contains a mistake. One 
of the authors (A. M.) told us that nevertheless a proof can be given along 
the lines presented in ref. 6. 

In this paper we show that, as long as h does not coincide with one 
of the critical values h*(fl), then the effect of the boundary conditions is 
exponentially weak [see statement (ii.b) in Theorem 1 below] uniformly in 
the boundary conditions themselves. In this way we solve the problem of 
the global uniqueness, proving that there are no other (non-translation- 
invariant) Gibbs measures. 

For systems with a finite spin space and with a unique ground state 
satisfying the Pirogov-Sinai condition, global uniqueness has been proven 
in ref. 15. 

From the technical point of view the problem is the following: when 
one considers only translation-invariant Gibbs states, uniqueness is usually 
proven within the framework of the theory of Pirogov-Sinai, by proving 
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that the "wrong" boundary conditions induce a wrong phase attached to 
the boundary, whose volume is negligible with respect to the total volume. 

What we show, instead, is that if A is a square of side N large enough 
(depending only on fl and h), then, no matter how high the boundary con- 
ditions are, the wrong phase attached to the boundary does not penetrate 
inside the bulk, but stays in a layer of thickness of order log N (we actually 
prove this for a thickness which is a fraction of N and this is enough for 
our purposes, but the argument can be iterated and yields what we just 
said). 

We are unfortunately only able to carry out this program for values of 
k up to a certain value k m a  x which is, however, exponentially large in ft. 
This limitation has a technical origin and probably can be eliminated, but 
that is likely to require some additional work. 

With regard to the critical case h =h*(fl) ,  we give a self-contained 
proof of the existence of the two translation-invariant Gibbs measures 
generated by the b.c. k and k + 1. An alternative approach would be to 
show that, once one has (1) good bounds on the restricted partition func- 
tion with only "elementary" excitations (Lemma 2.5 in ref. 6 or Lemma 2.7 
here) and (2) a rough a priori bound on the moments of q~(x) which are 
uniform in the b.c. (Proposition 3.2), then one can fit into the framework 
of ref. 2, after verifying that the assumption of a finite spin space can be 
removed from their arguments. In this way one would also obtain that the 
two Gibbs measures mentioned above are the only extreme translation- 
invariant ones. We sketch the proof of this last result in Section 8, following 
a similar strategy of ref. 21. 

The problem of the existence of non-translation-invariant Gibbs 
measures at h = h*(fl) is still open, even if a negative answer seems more 
likely. 

As a byproduct of our work at h =h*(fl) ,  we obtain a result which 
says that, under free boundary conditions, the random variables 

tr(x) = sign(~o(x) -- k - 1/2) 

behave roughly as a 2D Ising model at low temperature with zero external 
field and free boundary conditions. In particular, we get a large-deviation 
result on the magnetization for a (Corollary 4.3), wich will be used in a 
concrete way in our second paper/4~ 

The main result of this first paper is then as follows: 

Theorem 1. There exists flo such that for all fl>~flo there are 
fl/90000 positive numbers Jh * to~  km~ t k WJ S k =1, with km~x = I_e - 3, such that the following 

hold for k = 1 ..... kma x : 
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(i) 

(ii) 

I e --4ilk ~ flh~(fl) <~ 4e --4ilk. 

If h~.(fl) <h <h$_l(f l )  [define hg(fl) = + ~ ] ,  then: 

(a) T h e r e  exists a unique Gibbs measure for the interaction 
(0.1). 

(b) There exist m(fl, h)>O,  C(fl, h )>O such that for any 
N>~18/h+ 11 

sup [E~q~(O) -E~ 'q~(O) l  <~ C(fl, h) e -"'p'h'u 

where E~(~0(0)) denotes the expected value of the height 
of the surface at x = 0 in a square QN of side N and center 
at the origin, with boundary conditions ~. 

(iii) If  h = h~(fl), then both partition functions Z~N and ~Tk+QN 1, with 
boundary conditions ~ = k and ~ = k + I, respectively, admit a convergent 
cluster expansion. Hence there are at least two distinct extreme Gibbs 
measures. 

Let us consider now a Glauber dynamics for the surface ~o which 
mimics the dynamics of an interface in a 3D Ising model, namely at each 
updating we modify by only + 1 the heights {~0(x)} .,.~ v at only one site x, 
with rates such that the resulting Markov process is reversible with respect 
to the SOS Gibbs measure p v(q~). Then, keeping in mind the above anal- 
ogy with the 2D Ising model, one may conjecture that the qualitative 
behavior of the time evolution of the variables {~r(x)}.,.~ v will be that of a 
Glauber dynamics for the 2D Ising model in the one-phase region if 
h r or in the phase coexistence region if h = hff.(fl). For the latter it 
has been shown that the relaxation time in a finite square of side L is 
uniformly bounded in L in the first case, ~2~ while it is exponentially large 
in L in the second case if the boundary conditions are absentJ 14~ Thus we 
expect that, at the critical values h*(fl) of the external field h, the relaxation 
time for the SOS model with open boundary conditions will be exponen- 
tially large in the side L of V, with an exponential rate which, in analogy 
with the results of ref. 14, should be related to the so-called step free energy 
(see, e.g., 16). For values of the magnetic field different from the critical 
ones one should have instead a fast relaxation to equilibrium uniformly in 
the boundary conditions and in the size of the region V. 

We conjecture, in view of the previous remarks, that these results 
should also apply to a 3D Ising model with external field h on a cube Q 
with - 1 b.c. on one face and, e.g., free on the remaining ones. Notice, that, 
if the b.c. are + 1 everywhere, then it is known ~9~ that the relaxation time 
is bounded uniformly in the size of the cube. As we explain in ref. 4, such 
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a behavior would contradict the common wisdom asserting that as long as 
the thermodynamic parameters are in the one-phase region, the relaxation 
time in finite volume should not be too sensitive to the b.c. 

In our second paper we prove the above picture for the dynamical 
SOS model, but we do not compute the exact asymptotics of the relaxation 
time as L ~ oo in the critical case h = h*(fl) and we do not establish any 
rigorous connection between our results and the 3D dynamical Ising 
model. 

More precisely, we consider the dynamics of the surface in a square 
QN of side N with boundary conditions ~ and magnetic field h and we 
focus on the analysis of the ,,~,4,.~, in the spectrum of its generator. Our ~1-"  QN 

main result in ref. 4 is as follows: 

T h e o r e m  2. In the same setting as Theorem 1, we have for all 
k = 1,..., km,x : 

(i) If h*(fl) < h  <h*- l ( f l ) ,  then there exist L0(fl, h), x(fl, h) > 0  such 
that 

inf inf gaph'e~(QL)>~x(fl, h) 
L > L o  ~/., e .f2 

(ii) I fh  =h~'(fl), then there exist positive constants C](fl, h), C~_(fl, h) 
such that for all N >  10/1l 

C l(fl, h) e-IOOflkN~ gaph, O(QN) <~ C2(fl, h) e -c 1/40)flN 

where ~ means free boundary conditions. 

We conclude with a short description of the organization of the paper. 
In Section 1 we define the model and give the main result. In Section 2 

we express the partition function as a gas of interacting cylinders and we 
recall several results, essentially due to Dinaburg and Mazel, on such 
models. In Section 3 we prove some basic a priori bounds, uniformly in the 
boundary conditions, on the distribution of the variables {r which will 
be used several times. In Section 4, following the approach of Zahradnik ~2~1 
to the Pirogov and Sinai theory we prove the existence of the critical value 
h*(fl) via cluster expansion methods and we prove part, (i), (ii,a), and (iii) 
of Theorem 1. 

In Sections 5 and 6 we show that, if the external field h is different 
from the critical one h*(fl), then the influence of boundary conditions is 
confined close to the boundary independently of their strength. This proves 
part (ii,b) of Theorem 1. A corollary (weak mixing in the language of 
ref. 17) of this result is discussed in Section 7. Section 8 contains a sketch 
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of the proof  that, in case (iii), all t ranslat ion-invariant  Gibbs  measures are 
convex combinat ions  of the ones given by the boundary  conditions k and 
k + 1. Finally, in the appendix we collect some minor  technical results. 

1. PRELIMINARIES A N D  RESULTS 

1.1. General Definit ions 

We consider the two-dimensional  lattice 7/2 whose elements are called 
sites and its dual 7/. = 7/'- + ( 1/2, 1/2). For  x, y ~ R 2 we define two distances 

2 

d(x , y )= lx -  yl= ~, I x , - y , I ,  
i = 1  

d~(x, y) = I x -  y] ~. = max I x i -  Yil 
i =  1,2 

[x, y] is the closed segment with x, y as its endpoints. The edges of  7/-" (7/ .)  
are those e = [ x , y ]  with x, y nearest neighbors in 7/-' (7/.).  Given e an 
edge of 7/~-, e* is the unique edge in 7/.  that intersects e. The boundary of 
an edge e = Ix ,  y ]  is Oe = {x, y}. The boundary of a subset of edges ~ is the 
set of sites ~ that  belong to an odd number  of edges of~. A set of edges 
is called closed if its boundary  is empty. 

We will often consider our model on a square 

~{(xl,x2)ET/'-:-L<-..x~<...L,i=l,2 } if N = 2 L +  1 

QN=[{(x,,x2)eT/Z:-L+l<-..xi<..L,i=l,2} if N=2L 

A and V will denote arbi trary subsets of 7/-'. I f  A and V will denote 
arbi trary subsets of  7/-'. If  A is finite, we write A c c  7/2. The cardinarlity of 
A is denoted by [AI. We define four kinds of boundaries: 

OA= 

~A= 

O+A = 

~A= 

{x~A:d(x, A c ) =  1} 

{x6A:do~(x, AC)=l} 

{x~A":d(x, A)= 1} 

{e*={x,y]*:{x,y} mA ~ ~,  {x,y} c~A" v ~ }  

where A" = 7/2\A. 
(xl ..... x,,) is called a path from xl to x,, if [ x i + , - x ; [ = l  for 

i =  1 ..... n -  1. A , -pa th  is the same as path  with [xi+~ - x j [  = 1 replaced by 
d~(xi, x;+ l )  = 1. A ( . - )  path  is called slef-avoiding if xi~xj  for all {i,j} 
such that i ~ j  and {i,j} ~ { 1, n}. If x~ =x,,, the (*-) path  is called closed. 

We say A =7/-" is connected ( . -connected)  if for all x, y in A there 
exists a pa th  ( , -pa th )  from x to y which is entirely contained in A. We call 
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Fig. 1. The interior ~ of an element ct ~ CB. 

A c c  Z 2 s&lply connected if A c is *-connected. A set of  edges ~ is connected 
if the union of all its edges is connected in R 2. 

We denote by Cs  the set of  all finite closed connected sets of  edges of 
77,. If  ~ e  CB, then we define the interior of ~ (see Fig. 1) as the set of  all 
sites x = (x j ,  x , )  ~ Z-" such that  the half-line 

{x~} • [x,,  + ~ )  

intersects ct in an odd number  of points.  The interior  of  ~ is denoted  by 
and is always a (possibly disconnected)  simply connected subset Z 2 for 
each ct e C~. The set CB(V) is the set of  all ~ in CB such that  0Z c V. 

1.2. The SOS M o d e l  and Results 

The configuration space of the model  is s = Z ~ ,  o r / 2  v = Z v for some + 

V c Z  2. An element o f t 2  v will usual ly be denoted  by q~= {~o(x), x ~  V}. If 
U c V c Z 2 and ~o e 12 v we denote  by ~p v the restr ict ion of ~o to the set U. 

Given V c c  Z 2 and some boundary condition (b.c.) ~O e l2 ,  one defines 
the Hami l ton ian  as 

H~{~(q~)={ ~ Icp(x) -cp(y) l  + ~. Icp(x)--~p(y)[ 
x . y ~  V x e  V, v ~  V r 

I x -  .vl = 1 I x -  .~;I = 1 

+ h  ~ '  ~o(x) (1.1) 
.x-eV 
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for ~p E t2 v. For  technical reasons we will need to consider a more  general 
version of ( 1.I ): 

HS~h'e'(cp) = ~ ~ J(x, y) I~0(x)-  ~o(y)l 
x ,  y e  V 

I x  - y l  = l 

+ ~ J (x ,y )  I ~ 0 ( x ) - r  +h Y~ ~(.x-) (1.2) 
x ~  V, v E  F r x E  V 
Ix - .;'1 = l 

and we always assume 0 <~J(x, y)~< 1 for all x, y. We (improperly)  write 
J e 6 V  if J(x, y ) <  1 only for the boundary  terms, i.e., if J ( x , y ) =  1 unless 
[x,  y ] * s  6V. If  we take J(x, y ) =  0 for all boundary  terms, then we have 

free boundary conditions, which we also denote with 

H~;.~(cp)=�89 ~ I~o(x ) -~o(y ) l+h  Y, ~o(x) 
x ,  i, E V x E V 

I x - ' y [  = 1 

(1.3) 

The part i t ion function is given by 

ZS'"'r = ~ exp[ -fln~/"c'(q~)] (1.4) 
r e K2v 

When J(x, y) = 1 for all x, y we drop the superscript J. In what  follows we 
assume to have chosen fl large enough once and for all, so we do not 
usually write our quantities as fl dependent.  If tp(x) = n for each x, then we 
say that the system has n-boundary  condition. Given any set a of  dual 
edges (for instance, a = cf V), we define 

10q j =  Y~ J ( x , y )  (1.5) 
e *  = [ x , ) , ] E a  

(if J =  1 everywhere, this is just the ordinary length of a). 
For  U c  7/2, let F u be the a-a lgebra  generated by the collection of sets 

{ q~ e t2: ~o(x) = n}.,.E u,,,,z+ 

(if U is finite F u has an obvious one-to-one correspndence with the set of 
all subsets of  I2u), and let F = Fz2. The (finite-volume) conditional Gibbs 
measure on (12, F) associated with the Hamil tonian  (1.2) is defined as 

f ( z J ' h ' q ' ( I I ) ) - '  exp[  --flH~h'r 
/t~h'q'(q~) = ~ if q ~ ( x ) = ~ ( x ) f o r a l l x ~ V "  (1.6) 

L0 otherwise 

We also regard ,J.h.~ v as a measure on Y2 v by extending each configuration 
r e t2 v to the whole space in such a way that  it agrees with the boundary  
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conditions outside V. The expectation with respect to the measure  (1.6) is 
denoted by ~J'h'~'t ~ v  , .) .  The set of  measures (1.6) satisfies the compatibi l i ty 
conditions 

J,h,t~ J,h,~b I PA (q~)= ~ It,l (~p )it~,"'~~ foral l  V c A c c Z  2 (1.7) 
t,o' E ~'2 

A probabil i ty measure p on (g2, F) is called a Gibbs  measure (see, for 
instance, ref. 10) for the interaction (1.2) if, for each V c c  7/-', ~oo~s 

i,{~o ~a:~o =~Oo on Vl r v.}(~,) 

= p {  ~o e g2: q~ = q~o on V] ~o = ~ on 0 + V} = p~}"*(~o) 

for / l -a lmos t  every ~. The first equality says that  p is a Markov r andom 
field. 

One introduces a partial order on the g2 v by saying that q~ ~< ~o' if 
q~(x) -.~ ~o (x) for all x ~ V. A function f:  (2 v~--~ R is called montone increasing 
(decreasing) if q~ ~< q~' implies .f(q~) <~f(~o') [f(~o) >~f(~o')]. An event is 
called positive (negative) if its characteristic function is increasing (decreasing)�9 
Given two probabil i ty measures #, p '  on (~2 v, Fv),  we write p-..<p' if 
I t ( f )  <~#'(f) for all increasing functions f [by  # ( f )  we denote the expecta- 
tion with respect to p ]. 

In the following we will take advantage of the F K G  inequalities, (7) 
which state that: 

1. If ~ ~< ~' ,  then p~h.~,..<p~h.r 

2 If  f and g are increasing, then E~}"u'(fg)t> ]~J,h.~( f ~  ~ J ' h ' ~ [  o'~ 
J,h,t~ J,h.~l' Given two finite-volume Gibbs measures p v , P v , there exists a 

coupling between them which preserves the order of  the b.c., i.e., a prob-  
ability measure v~} ''r162 on g2 x ~2 such that  (we drop J, h for simplicity): 

1. v~;*'{(q~,q;):~o=cp0 } =p~ACpo) for all q~o~g2 v. 

2. v~;~'{(~o, cp'):~o' =q~o} =P~(q~o) for all ~ P o ~ v .  

3. If~O~<tp', then v~;*'{(q~,cp'):~o~<~o'} = 1 .  

Finally, we recall for the reader's convenience the main result in ref. 6. 

T h e o r e m .  (6) There exists flo such that  for all fl 1> flo, if 

e-4#k+ll/l~176 -4ptk-~)-I~/t~176 k =  1, 2 .... 

then the set of all Gibbs  measures [ for the interaction (1.1)] which can be 
obtained as an infinite-volume limit of  finite-volume Gibbs  measures with 
bounded boundary  conditions contains exactly one element. 



SOS Surface Interacting w i t h  a Wall 833 

In this paper  we prove the following results: 

Theorem 1.1. There exists fl0 such that  for all fl>~flo there are 
h * kmax " positive numbers  { k (fl)} k = 1, with kmax = I_eP/2~176176176 such that  the following 

hold for k = 1 ..... kmax : 

(i) �88 -4ak <~flhff(fl) <~ 4e -4#k. 

(ii) If  hZ(fl) < h < h,~_ t(fl) [define h*(fl) = + ~  ], then: 

(a) There exists a unique Gibbs  measure for the interac- 
tion (0.1). 

(b) There exist m(fl, h)>O, C(fl, h)>O such that  for any 
N>>. 18/h + I I  

sup IE~u~ ~< C(fl, h) e .... ,p.h,u (1.8) 

(iii) If  h=h:(f l ) ,  then both parti t ion functions Z*'k(QN) and 
Z h'k+ I(QN), with boundary  conditions ~b - k and ~b-  k + l, respectively, 
admit  a convergent cluster expansion. Hence there are at least two distinct 
extreme Gibbs  measures. 

Remarks. 1. The restriction k <~ e/j/2~176176176 can probably  be eliminated 
at the expense of making the exposition more  awkward.  Without  such a 
restriction one has to take the size of  elementary cylinders (see Section 2) 
increasing with their distance from the wall q~ = 0 and decreasing with the 
magnetic field h. This is the point of  view taken in ref. 6. To get our resuts 
in this f ramework,  however, requires additional work. 

2. In (ii,b), N is restricted to be greater than L81h+ l_J, because 
otherwise the LHS of (1.8) may  be infinite (think, for instance, of  the case 
N =  1). m(fl, h) can be taken equal to fl/(20,OOOk'-). 

3. With regard to (iii), one can prove, using the theory of Pirogov 
and Sinai as given in, say, ref. 21, that  the Gibbs  measures constructed with 
boundary  conditions k and k + 1 are in fact the only translation-invariant  
extreme Gibbs  measures. A detailed proof  of thiw would require us to 
introduce quite a lot of  extra definitions from ref. 21. We limit ourselves to 
sketching the proof  in Section 8. 

2. CYLINDER MODELS 

General Remark About  This Section. All results contained in 
this section are essentially due to Dinaburg  and Mazel. 16t Unfortunately,  
our future needs are such that our results are given in a slightly different 
form for both  hypotheses and theses. However,  our theses can be deduced 
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from our hypotheses using their proofs (sometime a little extra care is 
required). For this reason we will not present the proofs again. At the end 
of the section some remarks will illustrate the main differences between our 
statements and those in ref. 6. 

Following ref. 6, we are going to express the partition function of the 
SOS model as a sum over collections of cylinders. A cylinder is roughly 
speaking an elementary excitation of a certain ground state. The reason for 
introducing cylinders is that for large values of fl, our model can be con- 
sidered a gas of weakly interacting cylinders and this representation is 
suitable for the cluster expansion. Unfortunately the correct representation 
in terms of excitations with a small weight is not linked to the ordinary 
partition function in any obvious way, so one needs some preliminary 
work. 

A cylinder is a triple y=(~ ,E(y) , I (y ) )  such that ~ e C s  (see Sec- 
tion 1.1 ), and E(y), I(y) are positive integers not equal to each other, called 
respectively the external and the internal level of y. Here ~ is the base of the 
cylinder. We also set L (y )=  I I (y ) -  E(y)I, and S(7)= s ign(I(y)-E(y)) .  We 
denote r the interior of ~ (see Section 1.1). The collection of all cylinders is 
denoted by C, while C(V) stands for the set of all cylinders y, such that 
y c  V, and C(V,n) is the set of all ye  C(V) such that E(y) =n.  

According to ref. 6, one defines the notion of compatibility of two 
cylinders in such a way as to have a one-to-one correspondence between 
the set of configuration /2 v and the set of all compatible collections of 
cylinders. 

Oa~ 

Fig. 2. Four pairs of compatible cylinders. 
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The cylinders ),, y' are weakly compatible (see Fig. 2) if either 1 or 2 
holds: 

1. S(),) = S(?'), 94:9 '  and 
either ~7 c~ 9' = ~ and 9 n 9' = 
o r  9 c )7 t 

o r  )7' c )7 

2. S ( ) , ) = - S ( ~ ' ) ,  94:9 '  and 
either 9 c~ 9' = 
or 9 c 9 '  and 9 c ~ 9 ' = ~  
or 9 ' c ~  and 9 c ~ 9 ' = ~  

Cylinders ),, ?' are compatible if, in addition, 

3. E (? )=E( ) , ' )  i f ~ n ) 7 ' = ~  
E(~,) = I(?') if 9 c 9 '  
I(~,) = E ( y ' ) i f  p ' c ~  

(Hopefully) Harmless Notation Ambiguity. With 9, 9' collec- 
tions of dual edges, 9 n 9' usually denotes the set of common edges. But 
when we write 9c~ 9 ' =  ~ ( # ~ )  we always mean that 9w 9' is connected 
(disconnected) as defined in Section 1.I. In other words, if ~, 9', considered 
as subsets of R 2, have just one point in common, then we write 9 n 9' 4: ~ .  

Two cylinders ?', ~," are said to be separated by a cylinder ~, if 
9' 4:9 # 7" and 

either 9' C ~7 c ~" or 7'  ~ ~7 c 9' 

or 9' c ~-and y-~' = 7 or 9" c 9 a n d  ~' c 9  c 

Given a collection of cylinders F = { y}, we say that ~,', 7" ~ F are neighbors 
in F if there is no ), e F separating 7' and 7". The collection F is a (weakly) 
compatible collection of cylinders if all pairs of neighbors in F are (weakly) 
compatible. It is easy to see that if F is a weakly compatible collection of 
cylinders, then each pair 7, 7' ~ F is weakly compatible (not just the pairs 
of neighbors). Fex t denotes the set of all external cylinders in F, i.e., the set 
of all ), ~ F such that 9 is not  contained in the interior of any other cylinder 
in F. We write E(F)=n if E ( ~ ) = n  for all y~Fex  t. 

We define: 

�9 C*( V, n) is the set of all finite compatible collections of cylinders 
F c  C(V) such that E(F)=n. 

�9 C,*(V, n) is the set of all finite weakly compatible collections of 
cylinders F c  C( lO such that E(y) = n for all ~, ~ F. 

822/82/3-4-15 



836 Cesi and Martinelli 

The first result we present says that the partition function with con- 
stant boundary  conditions can be expressed, apart  from a trivial "ground-  
state energy" term, as a sum over compatible collections of  cylinders with 
suitable weights. So, given V c c  7/2 and weights z: C(V) ~ C, we define 

and we always assume 

2"(V, z) = ~ I-I z(7) (2.1) 
FeCc*(V.n) ),eF 

1I Iz(y)l < oo (2.2) 
FeC~(V.n) },~F 

We then have the following result. (6~ 

Proposition 2.1.  Let Zj.h,,(V) be the partition function defined in 
(1.4). If VccT / ' -  is simply connected, then there is a one-to-one corre- 
spondence between t2 v and C*( V, n), and 

zJ'h'"( V) =e-Ph"l~2"( V, Wj.h) 

where 

wj.h(7) = exp[ - f l  I~1~ L(y) - flhS(7) IFI L(7)]  

I~lJ= ~ J(x, y) 
[x, y]*  e 

If  F ~  C*( V, n) is the collection of  cylinders corresponding to the configura- 
tion ~p, then we write ~p ~ F. In Fig. 3 we give an example of  how a certain 
configuration ~p is obtained as a compatible collection of  cylinders. 

In the next three propositions we give a constructive characterization 
of  the collection F of  compatible cylinders corresponding to a certain con- 
figuration ~p, and state without proof  some more or less obvious properties 
ofF.  

P r o p o s i t i o n  2.2. Let V c c T / 2  be simply connected. Choose 
n ~ 7/+, ~p E 12 v and let F e C*( V, n) such that F ~ ~p. For  each m = 3/2, 5/2, 
7/2 ..... let 

um={{x~V:~o(x)<m} if l < m < n  

{Xe V:cp(x)>m} if m>n 

Let us write now 

~ u " '  = c~ "C u . . .  u ~ r'( ., ~ 
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Fig. 3. The configuration in (d) is constructed by successive addition of compatible cylinders. 
Each figure shows the internal level of the cylinders, while the external level can be deduced 
from the figure preceding the first one where the cylinder appears. All cylinders in (a) have 
external level equal to k. 

where  0~" ~ CB(/I)  are  the  c o n n e c t e d  c o m p o n e n t s  of  8U"'. Then  we have:  

(a)  F o r  each  m, i e i ther  ~ p ( x ) > m  for all xec%~,".' o r  ~ 0 ( x ) < m  for all 
- -  - - m  m x e a0c;. A c c o r d i n g l y  we call  0c; pos i t ive  or  negat ive.  

(b)  A cy l inder  y = (~, E(y) ,  I (y ) )  such tha t  I (y)  > E(y) be longs  to  F if 
and  on ly  if 

{ s:  ~ = 0c~ for  some  i, 0c~ pos i t ive  } = { E(y)  + 1/2 ..... I (y)  - 1/2 } 
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(c) A cylinder ), = (9, E(7), 1(7)) such that I(?) < E(),) belongs to F if 
and only if 

{s:~ = ~ for some i, ~ negative} = {1(7)+ I/2 ..... E ( ) , ) -  1/2} 

Proposition 2.3. Under the same hypotheses as in the previous 
proposition, let x, y be nearest neighbors in V, and let e* be the edge dual 
to [x ,y] .  Assume ~0(x)< ~0(y) and let 7 ~ F  be such that g~e*. Then: 

(a) If)Y~x, then S(),)= --1 and ~o(x)<~I(?)<E(7)<~o(y). 

(b) I f ~ y ,  then S(),)= +1 and qo(x)<<.E(7)<l(7)<<.~o(y). 

Proposition 2.4. Under the same hypotheses as in the previous 
proposition, let x eaV, y ~ V c be nearest neighbors, and let e* be the edge 
dual to l-x, y] .  Assume ~p(x)> n and let 7 ~ F be such that y~ e*. Then, 

S(7)= +1 and n<~E(7)<I(y)<~o(x) 

The representation of the partition function given in Proposition 2.1 
has the drawback of incorporating a very complicated constraint hidden 
inside the notion of compatibility between cylinders. The standard trick is 
then to define a new renormalized weight of cylinders in such a way that the 
partition function can be expressed as a sum over collections of weakly 
compatible cylinders (much easier to handle) with a renormalized weight. 
With this in mind we are going to swallow some more notation. 

First of all we need to consider the cylinder partition function (2.1) 
with the additional constraint that all the external cylinders belong to some 
prescribed set. For this reason, if H c C is an arbitrary set of cylinders, we 
define 

2"( v, z, r / ) =  y~ I-[ z(~,) 
F~Cc*(V,n) ~,EF 

Fext  = H 

The constraints on the partition function naturally arise as compatibility 
conditions between cylinders. Thus, given an arbitrary collection of cylin- 
ders F, it is convenient to set 

H(F) = { y ~ C: ~, is weakly compatible with every cylinder in F} 

Since weak compatibility does not involve the L(7)'s, H(F) only depends on 
the bases and signs of the cylinders in F. When F consists of just one 
cylinder we can use the following more compact notation: if V c c  2~ z is the 
interior of some cylinder 7 ( V= r then we define 

2"(V,z, +)  = 2"(v,  z,/7({~/})) 
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where 7' = (7, n, n + 1 ). We can also write the signed parti t ion function as 
a sum over particular configurations r 

where 

ZS'h'"( V, -t- ) = e-t~h"l~q2"( V, ws, h, +_ ) 

= Z exp[--flH~h'"(q~)] (2.3) 

g2,~+ = {~o ~g2v: ~o(y)>~nforally~OVand } 
there exists x E OVsuch that cp(x) = n 

(2.4) 

and 12];- is defined in a similar way (replace /> with ~< ). The reason for 
introducing the signed parti t ion function becomes clear if we write 

2"( v, z) = ~ 1-I z(~,) 2 '~(~,  z, s(r)) (2.5) 
F ~  C*ex t (V,n )  y ~ F 

where * C .... t( V, n) is the set of all F ~  C*( V, n) such that F contains only 
external cylinders. Given a set of weights z(7), we define the renormalized 
weight of ~, as 

2'~)(~, z, s(~)) 
5(7) = z(?) (2.6) 

Iterating (2.5), it is not difficult to show the following result. (61 

Proposition 2.5.  If V c c  7/-' and z is a set of weights such that 
(2.2) holds, then 

2"(v, z, n )  = ~ I-[ -~(~) (2.7) 

F�9 ~ 17 

Before stating the next results, we want to briefly explain the goal of 
the rest of  this section. The importance of the previous proposit ion is the 
following: F is ,an element * C..(V,n) if and only if (1) for each 7 e F ,  
E(7) = n  and ~ c  V, and (2) each pair of cylinders in F is weakly com- 
patible. This means that the partit ion function (2.7) is already in a form 
which is suitable for cluster expansion in the version given, say, in ref. 11. 
The whole point is then to prove that the renormalized weights ~s.h are 
small, i.e., ~'J.h(7) ~<exp[ --cfl [~[jL(7) ] for some c. This will turn out to be 
true of course only for those cylinders whose external level E ( 7 ) =  k is in 



840 Cesi and Mart inel l i  

the "right phase", that is, only if there is a Gibbs state "close" to the con- 
stant configuration q~ =k.  On the other hand, in order to estimate the 
renormalized weight of a cylinder starting from the right phase k, one has 
to estimate the quotient in (2.6) whose numerator is a partition function 
with boundary conditions I(y) which may very well be in the "wrong" or 
"unstable" phase. This partition function will then contain unstable 
cylinders, i.e., cylinders whose renormalized weight is large. For this reason 
one cannot hope to use directly a cluster expansion in order to estimate the 
quotient in (2.6). 

The standard solution for this kind of problem is to study first a 
modified partition function which contains only elementary cylinders, that 
is, cylinders which are small enough to guarantee that the), are all stable 
(their renormalized weight is small), independently of their external level 
The study of the elementary partition functions for all b.c. will tell us what 
the right phase is (Lemma 2.7) at least if the magnetic field is such that we 
are not too close to a phase transition [h~Ik(fl) given in (2.15)]. After 
that, one expresses the full partition function as a sum over collections of 
large cylinders (grouped into contours) on top of which one can have 
arbitrary collections of elementary cylinders (Proposition 2.6). The overall 
effect of the elementary cylinders will be a so-called "entropic repulsion" 
which acts as a magnetic field pushing the surface away from the wall. The 
combination of the "entropic field" and the ordinary field h forces the 
surface to stay on the right phase (Corollary 2.8). In Section4 we will 
finally complete our program and will prove a cluster expansion for (2.7) 
with the b.c. n equal to the right phase, even close to (and at) the phase 
transition. 

Throughout this paper we will often need some small constant inde- 
pendent of everything else. We call it ( and its value is fixed to 

(~  1 
1000  

A cylinder y is called elementary if diam~<~O(fl)=exp(fl(/lO) [the 
diameter is taken in the d( . , .  ) distance]. The set of all elementary cylinders 
in C(V) is denoted by Ce(V). The partition function in which all external 
cylinders must be elementary is denoted by 

z~( ^" v, ~_,- n )=2" (g , z ,  gnc~(P31= y~ ~ ~(~'1 
F e C , ~ ( V , n )  y ~ F  

Fext c H ~ Ce( V) 

Given r e  Co*( V, n), we now define r , c  r (l means large) as the collection 
of cylinders obtained by removing from r all those cylinders which are 
either elementary or contained (in the sense ~ c ~ ' )  in an elementary 
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cylinder of F. The reason for this definition is that in the future we consider 
elementary cylinders whose maximum size depends on E(y), so that a 
cylinder can be nonelementary, but contained in an elementary one. 

/'1 is still a (possibly empty) compatible collection of cylinders, 
because the operation of removing from F a cylinder together with all the 
other cylinders contained in it does not spoil the compatibility. 

Given rp e f2r, (and a reference level n), rpt stands for the unique con- 
figuration such that rp ~ F and ~0/-,,/'/. We set 

Co, l( I/", n) = { F e  C*( V, n ) : F =  F/} 

. The map q~ ~ Fl induces a probability measure on Co j( V, n) by setting 

~{)" ,"(v ' )  = ~,',","{~o e v:v,(~o) = v ' }  (2 .8)  

Let now F e * C,.,~( V, n). Then it is possible to write F as the disjoint union 

F =  Fl to . . .  to F~ (2.9) 

in such a way that, for each i: 

(i) F g e C * I ( V , n )  and there exists a unique cylinder which is 
external in F~. 

(ii) If yeF~ is not external, then E(y) r  =n .  

(iii) If yeF, .  and I ( ) , )=n,  then there is no other y ' e F s  such that 
?7' c~7. 

The decomposit ion (2.9) is unique. Collections of cylinders 
F e  C,.*I(V, n) that satisfy (i)-(iii) are called contours. Figure 3d shows a 
configuration which consists of four contours,  (assuming all cylinders are 
nonelementary) separated by the white regions where rp =k .  We set 

Con( V, k)  = { F e Cc*l( V, k ) : F is a contour} 

For  a contour  F we define 

Fi.t = {y ~ F: I(y) = E(F)}  

, fg\U,, 'Er,, '  ~,  g' v ( r ,  y~ = ~ . Z  ' 

v(V) = U v(/', y) 
},~ F 

F o = Fex t U/-'int 

if y ~ F \F in  t 

if y e Fi,t 
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Obviously 

~v(r) = U 
yeFa 

We also let E( F) = E( f'ext) and S(F)= S(_r'ext). Two contours F, / "  are 
said to be weakly compatible if: 

(i) v ( F )  n v (F ' )  = ~. 
(ii) If ~'eFa, ? ' e F [ ,  then ~,, r' are weakly compatible [which, 

together with (i), implies that each cylinder in F is weakly compatible with 
every cylinder in F ' ] .  

A contour F and an elementary cylinder e are said to be weakly com- 
patible if every 7 e Fo is weakly compatible with e. 

Finally, we denote by Pc'( V, n) the set of all finite weakly compatible 
collections 

d=({r} ,  {~}) 

of contours and elementary cylinders such that FeCon(V,n) and 
eeCe(V,n) for all F, ee..~r We let WI(V,n) stand for the set of all 
d e  IV( V, n) such that d contains only contours. WI( V, n) has a trivial 
one-to-one correspondence with Co, t( V, n) given by 

d - * U F  

If we define the renormalized weight of a contour as 

_ - -  z" "2s~Y)lvIF ~a, /-/(F)) (2.10) ~(F) l l y ~ r  t~) , ~ ~ ,r~ z, 
2f"-)(v(r), z,//(ro)) 

and the sets v (d )=Ur~ ,v (F)  and ~r J r ~ d F  a, then we get the 
following result. ~6~ 

P r o p o s i t i o n  2.6. If V ~ 7 / 2  and z is a set of weights such that 
(2.2) holds, then 

2"(v, z) = X 2~(V\v(~/), z, u(~r 
.~  e w t (  V,n) 

x ]-[ I-I zOO 2~'~ ~,), z, U(,r  
F E ~  7eF 

= X 27(v, z, u(~)) I-I -~(/~) = 
,~/e IV/(V,n) Fe.~ 

I-[ ~-(p) 
(2.11) 
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where ~(p) is given by (2.6) if p is elementary, and by (2.10) if p is a 
contour.  

Thanks to Proposi t ion 2.6, we can use the one-to-one correspondence 
between Co j( II, n) and Wl( V, n) and write [see (2.8)] 

-S.h . . . . . .  Z~(V'wzh'l-I(d~ I-I Ws.h(F), ~eWl(V,n)(2.12) Pv t ~ J  = 
2"( V, wj.,,) ~-~,  

Now we want to introduce a hypothesis which allows us to keep the effects 
of J under control. So, given A c =  Z z and 0 ~< t ~< 1, we say that J satisfies 
the hypothesis H(A, t) if: 

(i) Je~A. 
(ii) [~[s>~ t 1~1 for all o~Cs(A). 

We also define 

A(J) = {x �9 7/z:J(x, y) r 1 for some y �9 Z 2} (2.13) 

If H(A, t) holds for J, then, clearly, for each VcA,  

IA(J) c~ VI ~< [0VI ~< 161,'1 (2.14) 

We will start the analysis of the SOS model by taking h in certain intervals 
Ik(fl) (k = 1, 2, 3,...) where the behavior of the system is easier to study, 
because the energy-entropy competition has a clear output. So we let, for 
k�9 

Ik(fl) = [h~-(fl), h~-(fl)] 
(2.15) 

h~-(fl)=~e -4ilk, h~(fl)=~---~e -4a(k-l,, h~-=~e -a/25 

For simplicity we also let 

1 
l=/(b, h) = - -  ~ l o g ( f l h )  

~ p  
(2.16) 

The following is a fundamental result in ref. 6. 

L e m m a  2.7.  Assume fl is large enough and h<<.h~(fl). Let 
V c c Z  2, and suppose H(V,~) holds for J ( i f= 1000-1). Let V0= V\OV. 
Let H be a set of cylinders with the following properties: 
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(a) If y~H and y' is a vertical translate of y [i.e., y'=(~,E(y)+s, 
I(y) + s ]  with s~> --(E(7) ^ I(y))+ 1], then y ' s H .  

(b) I f ~ c  Vo, then y e l l .  

Then [l  is given by (2.16)]: 

(i) If e is an elementary cylinder with g c  V, then 

# j,h(e) <~ e -iIS- 1)lel~L(~l 

(ii) I f O < m < n ,  then 

exp[ I Vo I e -4/~ . . . .  I VI e -4pr ^ lie-p/4 _ I V  ~ A(J)I e -,,cr ^ z)- pr 

"" V, W s, h, 17) Z,,( 
2~.'( V, W j.h, H) 

~< exp[ [ V] e -4p,,, + IV1 e -ap(m ^ %-p/4 + [Vn  A(J)[ e -pc/4] 

(iii) I fh~Ik( f l )  and n~k, then 

e--O'--k)phlVI2~(V'wJ'h'l-l)[ ~ 2 ~ ( V ,  Wj.h, ] 17)-.<exp -- /~h [V]. I n - k l  + IOV] e -pr 

(iv) If h ~ [h~-+ ~(/~), h~-(//)] and n r {k, k + 1 }, then 

e_l,,_,_l~m, lV I Z,.(V, wj.h, ~<exp ~ShlV] . ln-k- l l+l fVle  -p~/s 
2ek+ 1( V, Wj, h, 17) 

C o r o l l a r y  2.8. Let ,8 be large enough, h~I~,(fl). Let V c c Z  2, and 
suppose H( V, ~) holds for J ( ( =  I000-1). Then 

2~(v,  w~,,,) = Y~ 1-[ %,,,(p) 
.x:/~ W(V,k) pE,~/ 

and (i) if p = e  is an elementary cylinder, then 

~T,j.h(e) <~exp[ --(/~-- 1) lglj t ( e ) ]  

and (ii) if p = F is a contour, then 

,~j,h(F)<~ I-[ exp[ --(fl-- l) l~ljL(y)--~lv(F, y)l .ll(y)--k[ 1 
yEF 
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Proof of  the Corollary. Part (i) was proved in Lemma 2.7. To prove 
part (ii) we recall the definition (2.10) and observe that 

2f '~(  v( r), z, n(  r~) ) >i 2~,~( o( r), z, rt( r )  ) 

>1 FI 2U'(o(F, z, n l r ) )  
y e F  

Then we apply part (iii) of Lemma 2.7 to each V= v(F,g) [since /7(F) 
satisfies (a) and (b)]. Thus (ii) follows from the inequality 

e -pr ~, 16v(F,Y)l<~e-'r ~ I#1< Z lYl, I 
"t'e F ~,,E F },~ F 

An important consequence of Corollary 2.8 is that the sum of the 
weights of all contours whose support contains a given site is "small". We 
state this result in a more general form in order to meet our future needs. 

Proposition 2.9. Let fl be large enough, V c c Z  2, and x E V. 
Then: 

(i) For all c>( /10 ,  

E e - cp I~IL( t )  ~ e --(2/3)cs[1 

e e C,.I V,k ) 
[~l >~ s,g~ x 

(ii) For n ~ Z + ,  let g(fl, h,n), fL, be such that 

flh,, >1 e -(,./25)p~p.h.,,) 

Let Y be the set of all F~  C*( V, k) such that: 

(a) There is a unique cylinder which is external in F. 

(b) F satisfies (ii) and (iii) in the definition of contours. 

(c) For each ? ~ F s u c h  that ~n6V=(2~, diam~<<.O(fl, h,E(?)). 

Then, for all c > (/10, c' > ~/10, 

(2.17) 

1-I exp[ -c f l  1~21L(~)-c'fl[Zzly I Iv(F, ~)1" I I (~ ) -k l ]  

IPc~t I >~ s, Pex~ ~ x 

~< exp( - 3csfl) (2.18) 

Remarks. 1. The first inequality is an easy consequence of the fact 
that the number of ~2 with length n is less than K" for some fixed number K. 
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2. The second inequality is trickier and relies on a construction in 
which one associates to each contour F a tree T(F). (6) 

3. Part (ii) clearly holds if one takes ~q(fl, h, n ) =  ~9(fl)=e pc/~~ [and so 
Y~ Con( 1I, k)],  and h(n) -- h with 

I = l(b, h) = - 4-~ log(flh) ~< 2 k m a  x = 2[_ePr176 (2.19) 

Together with Corollary 2.8, this implies that the RHS of (2.18) is an upper 
bound for the sum of the weights of all contours whose interior contains 
x and such that [Pext [~> s. 

Main Differences wi th  Dinaburg and Mazel.  (6) 

1. First of all in ref. 6 elementary cylinders are those with 
diam ~< 100[k ^ E(?)]. In this way their results are valid for h arbitrarily 
small (see also the remark after Theorem 1.1 ), while we sometimes have to 
assume (2.19). 

2. They always have J =  l, but taking J arbitrary is not a real com- 
plication. 

3. Statement (ii) of Lemma 2.7 is given with [ V[ instead of [ Vo[ in 
the LHS. With IV] the statement is false because in the estimate of the 
entropic repulsion one cannot count for sure on those cylinders which touch 
the boundary of V. These, in fact, could be forbidden by the compatibility 
rules at the boundary. If one takes, for instance, V= {x}, then 

2',~( V, wzh, + ) 
- 1  

27(  V, wj.~,, + ) 

which is compatible with (ii) if one uses I gol- 
Having IV01 instead of IV[ is the origin of the boundary term in the 

RHS of (iii). This term is harmless for the estimate of the weight of 
contours given in Corollary 2.8 (it just turns fl into f l - 1 ) ,  but causes a 
good deal of trouble in Section 5 (Section 5.3 would be unnecessary in the 
absence of this boundary term). 

4. Statement (iii) of Lemma 2.7 is given for 

e -4ilk + fl/lO0 ~ ~h ~ e--4P(k-- l~--p/]O0 

but one can easily check [given (ii)] that it is still valid for h SIk(fl). 
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5. Statement (ii) of  Proposi t ion 2.9 is given (with 2/3 replaced by 
1/2) in the case of e = 1/2, c ' =  I/4, 

h(n) = e-4fl(n , ' ,  k) and ~(fl, h, n) = 100(n ^ k) 

but the same proof  proves our  version. 

3. A PRIORI BOUNDS 

We collect in this section some basic estimates that  will be useful in 
the future. 

3.1. Bounds Uniform in the Boundary Conditions 

Often we ar  e going to assume that  our volume is large enough, so we 
set N~ =[_8/h + 1d. Let 

/-7+~(~o)=�89 ~ I ~ o ( x ) - ~ 0 ( y ) l -  ~ ~o(x)+h ~, q~(x)(3.1) 
x ,  y E  V x E  V, v E  I /c  ) , ' ~  V 

I x  - -  Yl = l [ x - -  )"l = I 

Then we have, for all J s 6V, 

(n 1) 16Vl++H~h"(~o)~> +,h.. - H v  ( ~ o ) > ~ ( n - l ) l ~ V l + + / 7 ~ ~  

where [OVIj was defined in (1.5) and J ~ f V  was defined in Section 1.2. 

Propos i t i on  3.1.  Let fl, h > 0 ,  V = Q u  with N>~NI=[_8/h+I], 
and let l(x)>1 0 for each x E V. Then 

GN(I) - ~ 1-'[ ~~ ,(') exp[ -fl/-TJ~~ < 

Proof. We can write 

R'~+(~o) = H~'(~o) +/-/~)(~o) 

where 

1 /-/~)(~o) =~ 
x ,  VE V X ~  V , y ~  V c 

Ix--y[=l I x -  y l =  1 

h +(x) +7 y' ~o(x) 
~ X E V  
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and the y,{h) is the sum over all horizontal bonds (H~ ~ is defined in the 
same way with vertical bonds replacing horizontal ones). By the Schwarz 
inequality 

G~I)<<.[ ~ I-I q~ e-2Phr"(~~ '/2 
rpE~21, x E  V 

x [  ~ I'-I q~(x)tC")e-2'z4]';"~"]'/Z-[G~)(l)G~'(')] '/2 
goE~2V x ~  V 

Since both G~)(I) and G~)(I) factorize as product of one-dimensional 
partition functions, all we have to do, in order to prove the proposition, is 
to show that each of these factors is finite, i.e., that 

N 

G,v(l)= E I-I all e -zal~ ,<~ (3.3) 
aE~'N+ i ~ l  

where we have set 

N--1 h ~  
HN(a)=--(al+aN)+ ~ la~+~--ai l+~,  at (3.4) 

i = l  t ~ l  

Notice that (3.3) is false if N is small (just sum over all constant configura- 
tions). Let then 

6 = min a i 
I ~ i ~ N  

Then 

N - - I  

[ai+l-ail >_.(aj + a N ) -  2d 
i = l  

and so, if N/> N1, 

h h ~ a , > > . ~  a, Hu(a)>~ - 2 6 +  ~ Nd + ~/=2_, ' ,=, 

In this way we get 

N cr~ 

(~v(l) = I'-[ E a~ e-flha'/2<~ 
i = 1  a i ~ l  

Proposition 3.2. For each fl, h > 0 ,  s~>0, there exist constants 
b~(fl, h,s), bz(fl, h ) > 0  such that for all AccTJ  2, for all J~6A, we have 
[Nl(h) = L8/h + 1_1]: 



SOS S u r f a c e  I n t e r a c t i n g  w i t h  a Wal l  849 

(i) For each x ~ A such that there exists a square A' = Qu, + y, with 
x e A ' c A  and for all s~>0, 

sup E~'~"~'go(xF ~< bl(P, h, s) 

(ii) For each V c A such that there exists a square A' = Qu, + y with 
V c A '  c A  

inf/x~' '*{ go(x)= l Vxe V} >_- b_~(/7, h) 
q * e ~  

Proo f  By (1.7) and the FKG and Markov properties, 

E~ih'q'go( x ) ' ~  Z /'t~/h'*(~")ES/"q"~~ * 
4,' e g2 

~< sup ESA'P'r ~ = sup E~.a'J""go(x) 
~' e~  nEZ+ { }-' ~< ~ exp[ --auZh.  ,---A' i(go)] ~. ~o(x),exp[~fl/7~oo(go)] 

~bdp, h,n) 

where we have used (3.2) and Proposition 3.1, The proof of the second 
statement is similar: 

~D",+{  ~o(,<) = 1 Vx ~ v}  

= ~ J , h , ~  t J,#, iI.,' Pa (qs)/x w' {go(x)=l Vxe V} 
~ ' ~  

>I inr ~]i'.+'{~o(.,<) = 1 V x ~ A ' }  = in f  ~ ' , h ' " {~o (x )=  1 VxEA'} 
,,o' e ~ ne~+ 

>~ ~ .  exp[ -fl/7~,~'(go)] exp( - f lh  IA'[)=b2(fl ,  h) 

3.2. The Peierls Argument 

We present here two inequalities which we will use several times, and 
which can be morally ascribed to Peierls. 

Proposition 3.3. Let g2 be any countable set and let 
w: ~ - ~  [0, oo) be such that Z =  Z i ~  w(i) < m. Define a probability 
measure/t  on 9 by setting 

Y'.i~xw(i) 
,U( X) = Z ' X = ~2 
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Assume there exists an arbitrary set s~, with weights ,P: t ~  [0, oo) and 
two maps f : / 2  ~-~ ~, g: t2 ~ / 2  such that: 

I. f ( i ) = f ( j )  and g(i)= g(j) implies i=j.  
2. w(i) <<. rP(f(i)) w(g(i)) for each i~12. 

Then, if X c/2, 

(i) It(X)<it(g(X)) ~ ~(j)  
j e f ( X ~  

(ii) It(X) ~< sup ~ ,~(j) 
i ~ 2  j E f { X o g - I ( i } }  

Remark .  Notice t h a t f a n d  g need to be defined only on X and not 
on the whole space/2. 

Proof. In fact we have 

It(X)= Z Z It(i) 
jEf(,,Y) i~. ,Y:f( i )=j  

<~_v'Ef(x3 ~, It(i)<<. ~ ff,(j) ~. It(g(i)) 
i~ X:f( i)  = j  jEf(3f)  i~ X:f(i  ) = j  

<it(g(X)) ~ ~(j) 
j E f (,V3 

where we have used property 2 in the first inequality and property 1 in the 
second one. Analogously 

It(X)< ~ It(i) ~, ~ ( f ( j ) ) < s u p  ~. rP(m) | 
i~ g(~f) j ~ X : g ( j ) ~ i  i ~  m ~ f ( X ~ g - I ( i ) )  

An immediate consequence of previous proposition is the following. 

Proposition 3.4. Let fl, h > 0 ,  Vcc7/2 simply connected, and 
keT/+.  Then for any J and any {F 1 ..... F,.} c Con(V, k) we have 

Itf",~{ ~ e n ~: ( r ,  ..... r~} ~ ~ , }  

- ~ " ' k { d "  { r ,  ..... C}  c d }  < l~ ~j,,,(r,) 
i = 1  

where A ~'1 is the collection of contours ~r such that =cr ,,, (Pt [q~t was defined 
right before (2.8)]. 
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Peierls maps f ( s r  {F1 ..... F~} and g(A)=  Proof. Take as 
J \ {  F] ..... r~}. Choose 

#(f(~r = l~I ~,h(r,) 
i = l  

Use the representation on the LHS of (2.1 1 ) for the partition function and 
notice that 

H( d~) c H( g( sC)a) 

Both 1 and 2 in Proposition 3.3 then follow. II 

3.3. The Distribution of ~0 When helk(p) 

We want to prove the following: 

Proposition 3.5. Let fl be large enough and h~Ik(fl) with 
1 ~< k ~< 2km,x (kmax = [_ePr176 Let V c c  Z-" be simply connected. Assume 
that H(V, t) holds for J with t~>~= 1000 -]. Let U c  V be such that 

IUc~ ~1 ~< 1,21, W~mC(V,k) (3.5) 

Then, for all c > (, 

,@h'k {~0 eK2V" ~. I~o(x)--kl>~clUl}<~e-P'cwv5 
x ~ U  

Proof. For each F~  C*( V, k) we define: 

�9 Fe. v is the set of all y ~ F such that )7c 77' for some elementary y' 
with )7' n U:/: ~ (y' may coincide with ~; notice that y itself does not 

"have to intersect U). 

�9 1"1. v is the set of all Y~F/such that )Tn U : / : ~  and I(y) #k .  

If ~o~f2z, we let P ' e C * ( V , k )  be such that ~0~F ~~ Then we have, 
using also (3.5), 

.x'~ U .x'~ U ) '~ F ~ : f ~ . x  " yE  F e : I ( y )  r  
B~') ~ k 

< ~ I~IL(~)+ y~ I;IL(~) 

822/82/3-4-16 
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Hence 

7~F~.u 

7~F~U 

(3.6) 

where p ~ and p_, are defined in the obvious way. To evaluate the first term 
we observe that if 

r ITI L(7)>~ 51UI 
7 e F~. U 

then, by regarding F 7 as a collection of contours d r', there exists 
s = 1 ..... [U[ and a collection of contours {F, ..... Fs} c ~ '  such that: 

(i) v(Fi) n U#~ for i =  1 ..... s. 

(ii) E~=Ip(FA >~c I el/2. 

Here 

p(FA = ~ [;[ L(7) 
)'~ Fi 

By Proposition 3.4, we find 

I uI 

E E' 1-[ 
,3=1 {FI. . . . .Fs}~ConIV, k) i=]  

where Z '  means the sum must be taken over all collections of contours 
satisfying (i) and (ii). Now we can use Corollary 2.8, Proposition 2.9 (see 
the following Remark 3), and the hypothesis on J, and get 

P,<~exp(-4t~'UI).,~,([UI ) 

x {sup r~c~,Kk,,~rexp[-~[~[jL(7)-~flh[v(F, 7),.,I(7)-k[l}" 

~<exp( - 4 t f l  ) ;2 ' ]  2 ]U,) ~ ( [ U l ) e x p ( - ~ , t s )  

<~[exp(-4tfllU[)] 2 iv' (3.7) 
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To evaluate/~2, we write instead 

2~(v, wz,) = Y. I-[ w,.~(y) 
r~Cr*(V.k) ~,E.F 

Now we use the Peierls argument with f ( F ) =  F~.u, g(F)= F\F~.v (these 
are well defined), and ~(F~.v)=ri),~r,.u Ws.h(y). By Proposit ion 3.3 we get 

~_~< sup Y/ I-[ w~.,,(r) 
r' ~Cc*(V,k) FEC~c(V,k) 7~re.u 

F\Fe, u = F" 

where ~'.' means that  the sum is restricted to those F such that 

r 

Y' I~1 L(y) >~ IUI 
),e Fe.U 

For each collection of positive integers n = { n(x)} .,. ~ v we define Y(n) as the 
set of all F such that 

(a) F is a compatible collection of elementary cylinders. 

(b) )7 n U ~- ~ for each ? e Fex r 

(c) If ), e Fext and )73 x for some x e U, then E ( y ) =  n(x). 

( d ) ) Z ~ , , r l ~ l  L(y)>~c IU[/2. 

Then it is clear that 

//2<~sup ~ 1-[ wj,,,(y) (3.8) 
n F ~  Ytn) ) , ~ F  

Since diam 191 ~ 0 = e pC/l~ we have flh [)71 <~flhO 2 <~ 1, so 

wzh(y) -%< exp[ - ( f l -  1) I~1~ L(y)]  

Because of this, the fact that H( V, t) holds for J, and property (d) of Y(n), 
we get 

~. l-['wJ.,,(Y) <~e-(c/4)'(p-l)lUI ~ I-[ e - (P- '~  I~bL(y) /2  (3.97 
FE t ' (nl  2,,~F F~ Y{n) y ~ F  

We perform the sum in the following way. Since the level of the external 
cylinders is fixed, an element Fe Y(n) is completely determined by a set of 
bases {;}, signs {S(~/)}, and heights {L(y)} (some choices of the above 
quantities may not correspond to a compatible set of cylinders, but if we 
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sum over all of them, we get an upper bound). After we sum over the 
possible values of {S(y)} and {L(y)}, we get 

~. I"[ ws.h(Y)<~e-(C/4)'(l~-"lvl~ ' 1-[ e-#lgls/3 (3.10) 

where 5Z' means that {9} is the set of bases of s o m e / ' e  Y(n). In order to 
sum over all { 9} we first fix the external ones and get 

~ '  1--[ e-Plgl'/3"-< ~ I-[ e-PI~I/3B(9) (3.11) 
{P} 9~ 1'7} {'71 P~{~} 

external 

where, using Proposition A1.2 and the subsequent Remark, 

B(9) = ~ I-I e-Pig~ 

foreach 9' e {~'} 

exp[ 1,71 e - 'p] ~< exp[O2e -'a] <~ exp[e -'a/2 ] ~< 3 

Substituting back in the previous equation, we obtain 

LHSof(3.11)~< ~ '  I I  e-Pie~ (3.12) 
{9} ~{~} 

external 

Because the { 9} are external, their interiors {)7} are pairwise disjoint. This, 
together with property (b) of Y(n), allows us to use Proposition AI.2 (and 
the subsequent Remark), which, since 191+>/t 19l and 191/>4, implies 

~'  I-I e-alrv/4~exp[IUI e-(3/4)pt] 
external 

Combining this with (3.8) and (3.10)-(3.12) and using c/> ~, we get 

/~2 ~ exp - ~ t ( f l -  1) I Ul + I s l  e-<~/4)~, ~< exp - ~ t ( f l -  2) I UI 

which, together with (3.6), (3.7) gives the proposition. I 

A straightfoward consequence of the previous proposition is the 
following result. 

Propos i t ion  3.6. Let fl, h, V, and J be as in Proposition 3.5. Then 

E~ h'k Iq~(x)-kl ~<e -p'/4, Vxe V 
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4. C L U S T E R  E X P A N S I O N  

4.1. M a i n  R e s u l t s  

Propositions 2.1 and 2.6 say that if V is a simply connected finite 
volume, then the partition function can be written as 

ZS'"'k(V)=e-P"*lvl2k( V, WZ,,) =e-p'kb~ ~ 1-I WZh(~) 
FEC~*v(V,k) yEF 

where the renormalized weights are given by (2.6). We want to show that 
for each integer k~>l there exists h~(fl)~ [h~-+ l(fl), h~-(fl)] such that 2~ k 
has a cluster expansion for h e  [h*(fl), h*_l(fl)]  (when k =  1 we prove 
cluster expansion for/2 ~ [h*(fl), h~(fl)]).  In particular, if/2 =h*(fl) ,  then 
both Z* and 2"  + ~ have a cluster expansion which implies the existence of 
at least two distinct Gibbs measures. 

Given a cylinder y, we define its truncated weights in the spirit of 
Zahradnik's version In~ of the Pigorov-Sinai theory 

W~,,(Y) = ~Zh(y) A exp I -- ~ I?Ij L(y) ] 

A cylinder y is called stable if wtj.h(y) = #zh(Y). Accordingly, we define the 
truncated partition function 

ZtJih'"(V) = e -ah'' I vl 2~'~( V, ws.,,) = e -ph" Ivl E I-I w~,,(r) 

and the truncated free energy 

f t r ( f l ,  h) lim IQNI--1 h,n " = log Ztr (QN) (4.1) 
N ~ o ~  

[remember that absence of the superscript J means J(x, y ) =  1 for all x, y] .  
Let 

ak(fl, h) k k+ =ftr(f l ,  h) - - f t r  l(fl, h) (4.2) 

The main results in this section are the following. 

Theorem 4.1.  Let fl be large enough, V c  c 7/2 simply connected, 
and let J be such that H(V,t) holds with t ~ > 1 0 ( ( ( = 1 0 0 0 - 1 ) .  If 
1 -%< k <-% kma x = kePr176 then: 

+ (i) There exists a unique h*(fl)e[hk+~(fl),h~.(fl)] such that 
ak(/~, h,~(p))=0. 

(ii) If h e [h*(fl), h~-(fl)], then all cylinders y s C( V, k) are stable. 
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(iii) If  h e [h~-+ ~(fl), h*(f l ) ] ,  then all cylinders y ~ C( V, k + 1) are 
stable. 

(iv) If  h e [ h ~ + l ( f l ) ,  h~-(fl)], then all cylinders 7 E C ( V , k ) w  
C( V, k +  1) with diam ~ <  ]ak(fl, h ) l - i  are stable. 

R e m a r k .  The typical situation with regard to J is J =  1 everywhere 
with the possible exception of  the boundary  of a square A, where 
Ze '~aA J(e)  >>, t I6AI holds. 

C o r o l l a r y  4.2.  Under  the same hypotheses, 

[log Z a'/';~p)" k + l (V)  - log s'h;~#~" k( V)[ ~< [d V I e -~'/4 

The third and last result needs some definitions. Given ~0 e g2, we get 

a(x )  = sign(tp(x) - k - 1/2) 

and, for U c c  7/2, 

M v ( a ) = M u ( a ( ~ o ) ) =  ~. a ( x )  
x ~ U  

m u ( a )  = m u ( o ( ~ ) ) =  IUl-'My(a) 

Then we have 

Corollary 4.3. 
such that  

Under  the hypotheses of  Theorem 4.1, if U c V is 

IUc~l <�89 for all o~eCs(V) (4.3) 

then, for m such that  ~ < m < 1 - (, we have 

lfl~*( P)'k { m u( Cp ) >1 -- m } <~ e -4flt` ' -re)lUll9 

p/,~(fi).k + ~< m} ~< e -4#t( l  -m)lUI/9 v I{mu(q~) 

4.2. General Results in Cluster Expansion Theory 

Before proving Theorem4.1  we present some standard results in 
cluster expansion theory adapted to our cylinder model. For  this purpose,  
given a set of weights 

z: C(7/2, k) ~--~ C 
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and an arbitrary finite subset ~ of C(7/2, k), we consider a generic partition 
function 

~ ( ~ , - )  = ~ 1-[ z(y) 
F~C~(Z2 , k )  } , e F  

(one should think of z as of the renormalized weight). A finite subset ~ of 
C(Z 2, k) is called a cluster if it cannot be decomposed into a union of two 
nonempty subsets ~ = ~ w (2, such that every cylinder in ~1 is weakly com- 
patible with every cylinder in ~2- 

For ( a finite subset of C(Z 2, k), we let 

I1~11 = ~ 1~71 t(7), ~=  U 9, ( =  U Y (4.4) 

With a little abuse of notation we also set, for each V c c  Z 2, 

~ ( V , z ) = ~ ( C ( V , k ) , z )  

[C( V, k) is an infinite set, but this will not cause any problem]. 

Theorem 4.4. Let c>0 .  There exists flo(C) such that if fl>~flo(C) 
and 

Iz(~')l ~<e -c#l~l L(r) VY ~ C(7/2, k) 

then, if V is any finite subset of 7/2, we have: 

1. ~(~ ,z) : / :0  for all ~ccC(~2, k) and &r(V,z)~0. 

2. The following relations hold: 

log ~(~,  z) = ~ ~T(~,, Z) V~ c c  C(Z z, k) 

log ~e( V, z) = ~ ~r(~, z) 
~, = c C ( V . k )  

where Or(l ,  z ) = 0  unless ~ is a cluster, in which case 

~T(~,Z)= ~ (--l)tel--le'llog ~(~' ,Z) 

3. Denoting by [7] the set of all cylinders in C(7/2, k) which are not 
weakly compatible with 7, we have 

)-" I~T(~, z)l e3"P"r <~ l-~-6[~[ VyeC(Z2, k) 
~ c ~  C(Z2.k ) 
~c~Ey] ~O 
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4. For each dual edge e*, 

Z 
~ CfZ2,k) 

I~T(~, z)l e3OI1r ~< 1 

5. If, for any finite volume A, we set 

r z)= Y. ~T(~, z) 

then 

log ~( V, z) = ~ ~k(A, z) 
A = V  

and [q~k(A, z)[ ~< exp[ -- 3c f lK(A)] ,  where 

K ( A )  - min{ II{l[' { is a cluster and 4 =  A}/> [aA[ 

6. The following relation holds: 

Y'. Iq~k(A, z)l ~<e -cps/2 
A ~ Z 2 

A ~ x ,  K(A)>~s 

7. If the weights z(y)  are translation invariant, then 

Ilog ~ (  V, x) - I VI f(z)l ~< laVI e -2~# 

where 

Ck(A, z) 
f ( z )  = 

o~. ==: IAI 

Remarks. Statements 1-3 follow from the Koteck~, and Preiss cluster 
expansion theory, I11) after having checked that their hypothesis (1) in the 
main theorem is satisfied with a(y)= 1~1/100 and d(?)=  ]flc 1~1 L(~). The 
only problem here is that C( V, k) is an infinite set, so one first defines 

&( v, z) = E IF[ zOO 
F e C ~ ( V , k )  V e F  

L(y) <<.n, V}'e F 

proves 1 and 2 for ~,, and then extends it to .~ taking the n---, oo limit. 
Statements 4-7 follow from the first three (see, for instance, ref. 5). 



SOS Surface Interacting with a Wall  859 

4.3. Preliminary Results 

We give now some results which will be needed in the proof of 
Theorem 4.1. 

Sometimes it will be useful to modify the strength of the interaction J 
at the boundary of a certain volume V, so, given J and a real number b, 
we define 

~bJ(x ,y)  if [ x , y ] * e ~ V  
](b, 6 V)(x, y) = [J(x,  y) otherwise 

Proposition 4.5. Let fl, h > 0 ,  V = c Z  2, 0 < b < l ,  and let 
] = ] ( b ,  ~V). Then for all m, neT/+ ,  

ZZ"'"( V) 
ZS'"''(V) - -  ~<exp[(bfl I n - m l  +(1 - b ) f l  sup FJ, h,., -~, I~o(x)-ml) I,~Vl.,] 

x ~ O V  

Proof. In fact 

ZS'"'"( V) 
ZS'h''(V) 

Zr V! [- 
exp I P <~ ZJ'h''( V) L 

But 

] Zi"h'm( V) 
~. ](x, y) In -- m[ ZS'h'"'(V) 

[ x , y ] * ~ V  

~. ] ( x , y ) = b  16Vb 
[x ,y ]*  e,~v 

J ( x , y ) ( 1 - b )  loP(x) - m[ 

J , h , m  J . h , m  - = [E v e x p [ - f l ( H  v (~o)--H~h'm(q~))]-I 

~<exp~ v€ . . . . . . . .  t p n  vS, h . . . . .  t q~ ) _ flH~,,..,( ~o ) ) 

~<exp[fl(1 - b ) [ 6 V ] j  s u p  I?Y'h .... - v  I~~ I 
x ~ O V  

Proposition4.6. Let fl be large enough and heIk( f l )  with 
1 ~< k ~< 2kmax. If V is a simply connected finite volume and H( V, 10G) holds 
for J, then, for each n > 0, 

ZJ'h'"( V) <~ eOa] p I,,-kl I~vl~ 
zJ'h'k( V) 

zJ.,,,~ 

and 

H J ,  h , m ,  , l . tY ,  h , m  __ v t~o)----v -- l_, 
Ix .y ]*  ~6V: x~ V 

So, by the Jensen inequality, 
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Let Y = ] ( b ,  ~V) with b =  1/10. Then H(V, () holds for J, so, 

Vx~ V 

If we call X the RHS of (4.5), then 

x ~'"'"' ~ ; ,  ~o(x)=~} ~</z~ /~o~12v:3X 

Z ~;,"."{~(x) = . }  
XE~ 

=(zJ""(~))-' Z Z exp[-fln~."."(~o)] 
~o(x)=n 

<~(z~'"'"(r -~ ~ ZJ'"'"(~,.) 
XE~ 

(b) On the other hand, by (1.7) and the FKG property, 

X>~ su_p/xs'h'"{ r = n, (p( y ) >>. n Vy ~ c5;} 
xEO~ 

= sup~F,.,,{~o(x)=. } ~.,,.,, IXf., {q~(y)>>.nVyeOf} 
x E O f  

~> sup (ZZh'"07))-' ZZh'"07.,.) e -ph'' l'-[ 
xE~f yE~\{x} 

Part (c) can be obtained in the same way. | 

(a) zZh'"(f ,  +_ ) <~ ~, zZh'"(~.,.) 
X E ~  

(b) zZh'"(f, + ) > / e  -ah" sup ZS'"'"(~.,.) l--[ 
x~cq,2 y~cq~{xl 

(c) zZh'"(], -- ) >~e -ph" sup zJ'h'"(~:,.) r I  

Proof. (a) By (2.3) 

ZZJ',"(~, + ) J,h, ns *"~n, + ) 
ZS.h.,,(r - / ~  ~ 

J'~',"~ n} #~, , 9 ( y )  ~ > 

Zh'"/ n} /~, t~o(Y) ~ < 

(4.5) 

/.tJhnt , "/>n} ~" I~otyl 

Proof. 
by Proposition 3.6, 

EJ.h,k v I q , ( x ) - k l  ~< 

Apply now Proposition 4.5. | 

The previous result "almost" says that, if h elk(fl) ,  then cylinder 
starting from level k are stable. Unfortunately, in the renormalized weight 
there is a quotient of "signed" partition functions. So we want to express 
"signed" partition functions in terms of unsigned ones. 

P r o p o s i t i o n  4.7. For any cylinder y, if we let ~., .=~{x}, then: 
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P r o p o s i t i o n  4.8.  Let fl be large enough and h~Ik(fl) with 
1 ~<k~<2kmax. If V is a finite, simply connected volume and H( V, 10() 
holds for J, then for each ?~ C(V) with E ( 7 ) = k  we have 

fig, h(7) <~ e --2fll~'lgL[y)/3 < wtff, h(7)  

Hence 7 is stable. 

Proof. If diam`2~<(-~, then 7 is elementary and the statement 
follows Lemma2.7. Let, then, diam`2>ff -~ and assume S ( 7 ) = + 1  (the 
opposite case is analogous). Set also n = 1(7). By Proposition 4.7 

ZZh'"(~,.) ( ) - '  ZJ'h'"(;' + ) <~ eP*k Z ~ 1-I s h, k /~; {q~(y) >/k} (4.6) z J ' h ' k ( ~ '  "Jr- ) .x'~'f tYx )  -- - " 
y~OT\{x} 

By Proposition 3.5, we know that 

( )' l'-[" Jh . k  lt;;~ {q~(y) =k} ~<(1 e-#r -I~el 

~< exp(12 1̀21 e-Py/5) ~ <elfl 

Moreover, if x e c5~7, ~,. is simply connected, so we apply Proposition 4.6 and 
obtain 

z J ' h ' " ( ~ x )  ~ eO.ll# In--kl la(Y,.)L, 

Z".*.k(,7.,.) 

But, since diam '2 > (-~ and H( V, lOG) holds for J, we have 

16(7.,.)1j ~< I f b +  4 ~< 1`2[s+4( 1`21 < 1.4 1`21J (4.7) 

Hence 

z J ' " ' " (~  , + )_ .~ 1~971 eO.Ep I,,-kl I~lJ+ I;I +phk ~< eO.3p I;IJL,~,) 
zZh'k(5 + ) "~ 

and the results follows from the definition of renormalized weights (2.6). I 

P r o p o s i t i o n  4.9. Let fl, V, and J satisfy the hypotheses of 
Theorem 4.1. With reference to the notation introduced in Theorem 4.4, we 
have, for each h" > 0, k e Z +, 

t r  

k f tr(fl, h) = - f lhk  + ~. ~k(A, w,, ) 

and 

Ilog ZStrh'k(V) --IVI ftkr(h)l ~< 16Vl e -ar 
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Proof. By definition of truncated weights, we can apply the results of  
Theorem 4.4 to both  h,k J i, k Zt~ (V) and Zt; �9 (V).  If  J = 1, we are in the transla- 
t ion-invariant case, so, by (7) of Theorem 4.4, we have 

log Z~rk( V) + flhk - Z A <~ e -~ 
0 e A ~ Z  2 

On the other hand, since ~k(A,  w~) = <O*(A, w~h), unless A intersects A(J)  
[see (2.13)], by 5 and 6 of  Theorem 4.4 we have 

[log h.k _ l o g Z t i ,  (V)[ Z~r (V) s/ '  k 

r~ h ) -- q)*(A, w~,h)l 
A ~  V 

~< Z E [lck( A, , , r  , r  ~th) [ + [~k(A, wsj,)[] ~<2 I,~VI e -pC I 
XE. Zi(JI A~.x" 

4.4. Proof  of Theorem 4.1 and Corol lary  4.2 

We set h* = h~'(fl) and a(h)=ak( f l ,  h). The free energy is given by 

f ( h )  = lim ION[ -~ log Z"'"(QN) 
N ~ o o  

and clearly does not depend on n. Proposi t ion 4.8 implies, for each N, 

zh;(/~).klc~ ~ ZI,f+,(~). k+ =zh;+,~P),k+ ,~ ,~N ,  =zh[~P~'*(QN), l (Qu) I(QN) 

which gives 

f~r(h[(  fl) ) = f(h~. (fl) ) -~ f k  + ' (h[ ( f l )  ) 

and then 

a(h[( f l ) )  >10 

In the same way one obtains a(h~+ l(fl)) <~ O. Moreover,  a s tandard calcula- 
tion (see, for instance, Proposi t ion 1.9 in ref. 21) gives 

Of','#7) 
- -  - -  - - p n  + ~,,(~) 

Oh+ 

where limit_ ~. 0%(fl)=0. So a(h) has a right and left derivatives and both  
of them are greater than, say, fl/2. This implies the strict monotonici ty  of  
a(h) in the interval [h~-+l(fl), h[ ( f l ) ] ,  and, as a consequence, (i). 
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In the following we will make  use of  the fact that, for 0 < m < n, 

d ZJ'h'"(V) 
- Z [E~h'"~~ >10 (4.8) 

dh ZSJ""'( V) .,.~ v 

because of F K G .  
We are now going to prove (ii)-(iv) by inducton. Let 

(A s) (ii)-(iv) hold for all cylinders y such that  I)71 ~<s. 

A~ is true because of (i) of L e m m a  2.7. Let us assume then As and will 
show that  A,+~ follows. Actually will prove only statements (ii) and (iv), 
since (iii) can be obtained in the same way as (ii). 

Choose a cylinder 7 with I~l = s +  1, E(7)=k ,  and I ( 7 ) = n  and let 7' 
be another  cylinder with the same basis 9 ' =  9 and E(7 ' )= k + 1, 1(7')= m. 
Let f.,.= f \ {x} .  The p roof  can be conveniently broken into the following 
steps: 

1. [log ZJ'h*'k( f . , ' ) -- log ZS'h*'k + ~(7.,-)[ <~ 191 e-llr V x  ~ O~ . 

2. If hs[h* ,h~ . ( f l ) ] ,  then l logZS'h 'k( f ,+)-- logZJ'h 'k(~,--) l<~ 
I~1 e -#r 

3. I f h s [ h * , h ~ ( f l ) ] ,  then for any n, 

Z. , /  . . . . .  ) 
' ty., ~<0.2/~ I n - k l .  191J Vx~0U log 

4. If  h ~ [h*, h~-(fl)], then ), is stable. 

5. I fh~[h~.+l(f l ) ,h~.( f l )  ] and diamg~<la(f l ,  h)l -~, then both 7 and 
y' are stable. 

Proof o f  Stop I. Since IU.,.l=s, by induction all cylinders contri- 
buting to the two part i t ion functions are stable, so 

z J . h * , i z -  �9 ~ J . h * , i , -  t~ ~Y.,-J = ~ ~7.,.), i = k , k + l  

Since f.,. is simply connected and since the proper ty  H( V, t) is inherited by 
all subsets of  V, we can apply Proposi t ion 4.9 to ~_,. and use the fact that  
a(h*) = 0  to obtain Step 1. 

Proof o f  Stop 2. Both part i t ion functions are sums over collection 
of cylinders y' with 171 ~<s, which are stable by induction. So, setting 
9o = r162 we obtain 

z J ,  h , k  . . . .  tffhk 1~5~1 t~ tToJ e <~ Z~'h'k(L +- ) = ~t~S'h'k'~7'- +- ) <~ ZSt;h'k(r 



864 Ces| and Martinelli 

By Proposition 4.9 

Ilog Z~;h'k(~o) -- log ZtSrh'k(~Y)J 

< (16~ol + I~21) e -pr + Ic~l fkt,(h) <<. I~l e-/~r 

which implies 

Ilog zS'h'k(~, + ) -- log ZZh'k(~, -- )1 

< lyl e -#U3 Jr- flhk I0r -<< I~1 e --[1(]4 

Proof  o f  S tep  3. We consider three cases. 

(a) If diam ~ ~< e pC/m, then 

ZJ'h' ' (~x)= Z,,S'h .... (L~)- = e-~h"l~"12,",'(~7.,-, ws.h) 

so we can use (4.8), Step 1, and Lemma 2.7(iv), and get 

Vm 

Z~.,,,,(~x) 
ZJ'h 'k(i ,  ) 

Z~ s'j .... (~'x)- ZJ 'h"k+l( i , - )  
<~ s.h.k ZJ.h'.k(~.,.) Z e + I(ffx) 

~< exp[ IJ~xl (e -pr + e-PC/5)] ~< exp(0.2fl In - k l .  lYIJ) 

If diam ~>  e/~r and n < k ,  then IJf.,.ls ~< 1.1 lylJ, so, by (4.8) and 

Z J'h''k+ '(gx) 
ZJ.h:+,~P}, k+ '(~.,.) ZS'h"k(~.,.) 

<~ exp[0.2fl I n - k -  l J. lYls + e-PC/" lYl ] <~ exp(0.2fl I n -  kl .  lYls) 

Proof  o f  S tep  4. (a) If n > k, then, by Proposition 4.7, 

ZJJ""(~7' + I ~< e-/~ IrDL(Y}RI R2 (('S.h(Y) = e -/J 1~I2L(~') zJ'h'k(Y, "k- 

get 

ZJ.h."(~.,.) 

zJ'h'k(f.,.) 

ZS'hL,l~'"(~.,.) 

(b) 
Proposition 4.6, 

,'-,J,h.k,zJ'h'"(Y")-, zJ'h~-~P~'"(Y") ~< e~ 'p I,,-kl. I,~l~,.m ~< eO.2~ I,,- kl -I~1~ 
f--~ ()).x') ~ zS'h~-(fl)'k(r 

(c) If diam ~ > e ~/'~ and n >/k + 1, we proceed in a similar way, and 
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where 
ZJ,"."(~.,.) 

R 1 = sup ~< eO.2# In -kl-I,~lj 
.,,.ea-~; zJ'h'k(~x) 
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Wj.h(Y) ~ e~ i;iJ LO'I < W~h(y ) (4.9) 

that is, the cylinder is stable. 

(b) If  n < k, it is just a bit trickier, 

ZJ.h . , , (L  _ ) Z J ' h ' " ( g  + ) 
WJ.h(Y) =e--#l~lJLl~')zj.h.k(~, + ) zj.h.k(~, __) 

~< exp[ - p  I~lJ t (y )  + e-#r I~1 ] R~ R2 

where we have used Step 2, and R~, R2 are the same as in (a). Hence 

WJ.I,(/) <~ e~ I;IIL(~O < W~.h(~, ) (4.10) 

Proof of Step 5. We already know that y is stable ifh E [h~(fl), h~-(fl)]. 
Here we will show that y' is stable for h in the same interval. The proof  
when h ~ [h~-+ i(fl), h*(fl)]  is identical. If m =/= k + 1, S = _ 1, then, by (4.9) 
and (4.10), 

ZJ'h'"'(f, S) ZZh'"'(f, S) ZZh'k(~, S) 
Z J'h'~+ ~(L S) - ZJ'h'k(L S) Z J'h'k+ I(L S) 

~< eO.22# I~l~l . . . .  kl zJ'h'k(~' S) 
Z J'h'k + 1()7, S) (4.11 ) 

Furthermore, we know that 

ZJ'h'k(~, S) ----J.h.k, - - - L t r  I,~,S)~-ZJtrh'k(~) 

Thus we find 

by Step 3, and 

( )' R ,  = IVI sup 1-[ Jh,k , >~ eahk _ _ ~ ;  {~0(3)~-k} 
x~a? y ~ ~r~l.~l 

To estimate R2 we first use F K G  to replace h with h~-(fl) " Jhk In p~  " and then 
proceed as in the proof  of  Proposit ion 4.8, obtaining 

R2 ~< 191 ei~l +#hk ~< eO.Ol# l~IJ 
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and that 

z J ,  h,k+ l(g, S) ~ e -:/ '  1~;I (* + l ) z J ,  h,k+ l(ffO) ~ e -r I'~[ZJrh'k+ 1(~70) 

where Y0 = g\cSg. Now, using Proposition 4.9, we can write 

log zJ 'h 'k (g~  S )  - -  log Z zh'k + t(g, S) 

~< log ,-,J.h,k, -, 7J.h,k ~tr /7) - Iog--~r + ](gO) + 1~71 

<"llogZJih'k(g)--Iglf,%l+llog7J'h'k+~t- ~,~ ,7o,~ -Ig01 J t r  / 'k+ II, 

+l lgl  f ,krl- Igol f,%+' I + 191 

~<2 I~1 +a(h)Igl  

But, since diam ~< la(h) I-1, we get 

a(h) Igl <~a(h)191 diam ~< 191 

So 

z J ,  h,m~ - ~x  
[7, a) ~ o.22a 

which means that Y' is stable. | 

Proof o f  Corollary 4.2. Same as the proof of Step 1. | 

4.5. Proof of Corollary 4.3 

Given ~o~g2v, let F~ ~ C,*( V, k) be the collection of compatible 
cylinders corresponding to q~, i.e., F~ ~ ~o. Let 

Afro) = { x ~  V:x~  gfor some 7~F~} 

Then, by the Chebyshev inequality, 

I.tl~*'k{ cp ~ D v: m v(cp) >1 --m} 

-%</x'~*'k{ IA(cp) r~ UI t> �89 - m) I UI} 
<~ e-Cpt~]-.,)/211UIEhv',k(ecP IX(~) :~ uI) (4.12) 

for all c such that the expctation is finite. The idea now is to introduce 
modified cylinder weights that allow us to express the expectation in (4.2) 
as a quotient of partition functions. This quotient will be estimated by 
cluster expansion. 
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So we let, for a cylinder 7, 

w/U(7) = Wh(X ) eC# I~'-, Ul 

Then 

where 

X =  

with 

Elb*.k(e,.lJ IA(~,)~ UI) = (2k( V, Wh*)) - I X  

E FI w~.(~) FI w,,.(y) 
F 6 Cc*( It, k)  ), �9 Fext )' �9 F \ F ex t  

= E VI wh'(7)e~Pl~uI 1-I 0,,.(7) 
F �9 C,*( IF, k )  ), �9 Fexr 7 �9 F\Fe:, t  

~< ~ l-I IVho(7) e~pleo ul 

)-- 1--[ - u  = wh.(7) 
F ~ C ~ ( V , k )  T � 9  
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~ . ( 7 )  = ~h.(7) eCP I ~  uI 

So we can write 

- U  
Z r � 9  c~ v.kl FI~,�9 r wh.(Y) 

E/~*.k(eCp IA(~) ~ ul) .%< _ _ _ _ _ _  (4.13) 
? r � 9  c,,*~ v,k~ Iq~, �9 r I'~h-(Y) 

N o w  we can use cluster expansions for both numerator and denominator 
if c is small enough. 

In fact, by Theorem 4.1, we know that 

Wh*(X) ~< e -pt I~I L(~,)I2 

and, on the other hand, using (4.3), 

'hu(7) ~< e-P"-"1121L(71/2 ~ e-~176 IPl t(},) 

if c ~< 0.98t. By Theorem 4.4 we get 

logRHSof(4 .13)~< ~ I ~ k ( A , , ~ . ) - - ~ k ( A ,  ~h*)l 
A ~ V  

~< ~ I'~k(A, ~ , ) -  ~k( A, "~,,*)1 
Acz. V 

A c~ U=/= O 

~< I UI e -(~/2~176 

822/82/3-4-17 
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Together with (4.12) this gives (take c = 0.98t) 

/t'~.*'k{ m t,(~) t> --m} ~< e -4#t'' -')Ivl/9 

In the same way one proves 

/l'~.*'k+ ' { m u(~o) ~< m} ~ e - ` p ' ` '  . . . .  ) IV l /9  

5. A R B I T R A R Y  B O U N D A R Y  C O N D I T I O N  I. A W A Y  F R O M  THE 
PHASE T R A N S I T I O N  

Throughout most of this section we assume the following: 

(K~) fl is large enough. 

(K2) h~Ik(fl)=[h~(fl),h~(fl)] [see (2.15)] with k--  1,...,kmax = 
LePr176 d and ( =  1000 -l. 

(/(3) A=Q~v with N>~No=L((3h)-~ d. 

(/(4) A' = QN,, where N' = N -  2[_N/4I. 

Our goal is to prove that boundary conditions do not percolate inside 
the bulk. So, for q~ ~ g2 A , we give a name to the set of clusters of the region 
where q~ is at ~o is at least j which are attached to the boundary: 

R+(A,j,  qo)=(xeA: there exists a path (x = X l x s  ~ c3A and r >~j for eachXS) such that t i  

R_(A, j, ~o) is defined in the same way with ~>j replaced by <~j. We also 
define 

S+(A,.L A')= {q~6OA: R+_(A,j, q~)nA' ~ (~ZS} 

S~ j, A')= S +(A, j, A')\S +(A, j-I- 1, A') 

The goal of this section is to prove the following two results: 

Theorem 5.1. Assume (K~)-(K4). Then for each j > 0  and for all 
~,EQ 

l t ~ ' ( S + ( A , k + j , A ' ) u S _ ( A , k - j , A ' ) ) < ~ e  -r (5.1) 

Theorem 5.2. Assume (KI)-(K2) and let A = QN with N>~ 10h-1. 
Then for each j > 0 and for all x e A, 

t.(~i~(S+(A, k +j, {x} ) w S_(A, k - j ,  {x} )) ~< e-r 
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Remark.  Notice that with n b.c. we are saying that there is no 
percolation at level (say) at least k + 1 reaching a distance greater than a 
certain constant divided by h. On the other hand, if we have free b.c. one 
expects cp(x)= k right at the boundary 0A. 

5.1. Perco la t ion  in Terms of Con tours  

We are going to (a) define an event slightly larger than S§ k +j ,  A') 
u S ( A ,  k - j ,  A'), but with the advantage of being defined directly in terms 
of contours, and (b) define a representation of the partition function ~" 
analogous to (2.11 ), but with contours starting from the "right phase" k. In 
this representation, weights of contours, which must be modified to take 
into account b.c., are not small enough to guarantee cluster expansions; 
nevertheless they provide bound (5.1). 

For reasons that will become more apparent shortly, we do not want 
the boundary conditions to affect the weight of elementary cylinders, so we 
ussie the following-- 

W a r n i n g .  In this section we modify the notion of elementary 
cylinder by considering as elementary only those cylinders y such that: 

(i) diam ~ ~< 0 = e ep/l~ 

(ii) I~c~6AI =0. 

Remark. Changing the definition of elementary cylinders is in prin- 
ciple a rather dangerous thing to do, since it is a very "low-level" definition 
and may affect a whole lot of things. We observe here that in our case the 
main statement in Section 2, i.e., Corollary 2.8, is still valid with exactly the 
same proof. Also the hypothesis (c) in part (ii) of Proposition 2.9 is given 
in such a way as to include the present definition of elementary cylinders. 

The idea for proving Theorem 5.1 is to replace ~ with cp/(defined in 
Section 2), by eliminating all elementary cylinders first, and then use (2.12) 
in order to estimate the induced probability. We then start by defining 

S+_j(A, j, A') = { s~ ~ WI(A, k): R • j, cp) n A' :~ ~ ,  where cp ~ d }  

S~ j, A'~ = S+_.I(A, j, A ' ) \ S •  j + 1 ) 

and showing the following. 

L e m m a 5 . 3 .  I f A = Q u ,  A ' c A ,  then for all fl, h , j , n ,N ,  

phi,( S +_( A, j, A,) ) <~izh.,{ cp: cp,~ S +( A, j, A,) ) =/ta-h.,(S• ,)) 
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Proof. We will actually show that 

R+(A, j, q~) c R+(A, j, ~,) (5.2) 

which implies the thesis. 
Let x e R + ( A , j ,  q~), and let (xl ..... xs) be a path connecting x = x j  

with x~.eOA such that q~(xi)>>,j for all i. Let F, Ft be the collections of 
cylinders in C*(A, k) corresponding respectively to ~p and q~t. Thus f ' / i s  
obtained from F by removing all elementary cylinders. Take any site xi 
along the pth. If there are no elementary cylinders Y such that )79 x,., then 
q~/(xj) = ~(xg) >/j. If, on the contrary, x; is contained in the interior of some 
elementary cylinder, then 

cpl(xi) = E(7,) 

where 7, is the most external elementary cylinder in F such that ~7, ~ xv 
But we know that y,  ~r x,. because otherwise Y, would have at least 

one edge in common with 3A and by consequence would not be elemen- 
tary, by property (ii). So, there exists j e  {i ..... s - 1 }  such that .'cje~, and 
xj+ ~ r ~,,  so that [xj, ,xS+ 1]* ~ 7,. Hence, by Proposition 2.3, 

E(7,) >~ ~o(xj) A ~O(Xj+I)~ j 

So cp/(x~)~>j for all i, which implies (5.2). Analogously, one proves that 
R (A, .L~o)~R_(A,  Lcp,). II 

In order to find a bound on fi(S+,t(A, L A')), it is useful to express the 
partition function with n boundary conditions as a sum over cylinders 
starting from k (the right phase) whose weight is modified if they touch the 
boundary. If one sets 

w~i(7) = wh(y) exp[2flq(y) L,,(y)] 

= e x p [ - f l  ]~] L(y)+2flq(y)L,,(y)+flhS(7)19[ L(7)] (5.3) 

where q(y)= [~c~3AI and 

L,,(~,) = I[k, n] c~ [E(~,), I(~')]1 X{ s ign(n-k) ( I (~ , ) -E(7) )=  1} (5.4) 

then the partition function with n b.c. can be written as 

Zh'"( A ) = e-Phk I,Jl-p In--kl . lJAI 2 k (  A ' W,II ) (5.5) 

Also, by Proposition 2.6, 

2*(A, wT,)= ~ w7,(~r (5.6) 
s /  ~ l ~ l ( A , k l  
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where 

w~(d) = 2~(A\v( ~),  wh, H(sr 

x I-[ I-[ [wg(r) 2',,','~(v(r, r), w,,,/-/(d))] (5.7) 
F e d  ? e F  

Notice that the elementary partition functions have wh and not w~ because 
elementary cylinders do not touch 6A, and so for them q(~,)=0. On the 
other hand, for the same reason, if F is a contour, then it may contain 
arbitrarily small cylinders touching the boundary of A. As we will see, they 
are not dangerous in our construction. By (5.5), (5.6) we get 

~ ' ( ~ r  - " . . . . .  ar w 2 ( d )  
=/ZA ~O~QA ~o/~ (5.8) 

2k(A, w'],) 

5.2.  The  C u t - a n d - P a s t e  O p e r a t i o n  

In this subsection we want to find an upper bound for 
- i t ,  pl IzA (S+.~(A,k+j,A')). The most natural approach leads one to try to 
estimate this quantity with Peierls-like sums like 

r e C o n l A , k )  
v(F)t'~OA ~ O,  v ( F ) ~  A' ~ O 

Unfortunately, the structure of contours is quite complicated and those 
techniques which yield, for instance, Proposition 2.9 are inadeguate in 
presence of an arbitrary b.c. because of the potentially dangerous factor 
q(y) L,,(y) in the modified weight. In the following we will see how the 
above sum can be replaced by another one containing very simple contours. 

Define 

Con +(A, k ) =  {F~ Con(A, k): V~, ~ F, { E(y), I(y)} = {k, k-I- 1}} 

and 

W~(A, k)= { d E  WI(A, k): V F ~ d ,  F ~  Con+(A, k), 

v(F) n OA # ~ ,  v(F) c~ A' 4= ~ }  (5.9) 

The structure of these contours is fairly simple. In fact, if F~Con+(A,  k), 
then: 

(i) If Yo is the external cylinder in F, then E(?o)=k ,  I 0 ' o ) = k  + 1. 

(ii) All the other y ~ F  have E ( y ) = k + l ,  I ( y ) = k  and there is no 
other y' such that ~ c  y-+ c go- 

(iii) If ? ~ Yo, then q(y)= 0, because of the compatibility with Yo. 
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The key result for proving the + half of Theorem 5.1 is the following. 

l . e m m a  5.4. Assume (K~)-(K4). Then for each n>k , j>k ,  

- h , n  0 - h . n  0 �9 It A (S +.,(A,j,A')) ~ r~(M) <~ltA (S+d(A, J -  1, A')) 
. ~  e I , V ~ ( A , k )  

were 

W(~r H I~(,F'), l~(1-')=e--(#h/3'lv(F)l H e-#flf'l-Zq'Y)) 
F ~ ,r~l "t, E F 

R e m a r k .  The above lemma is unfortunately false for S~ j, A') 
with n < k, j < k. The "negative" case is slightly trickier to handle and will 
be treated separately. 

Proof. Thanks to Proposition 3.3(i) and to (5.6)-(5.8), in order to 
prove Lemma 5.4 it is sufficient to find two maps f ,  g defined on WI(A, k), 
such that: 

(h,) f maps S~ j, A') into W~(A, k) and g maps S~ j, A') 
into S~ j -  1, A'). 

(h2) If f (~r  = f ( ~ ) ,  g ( J )  = g(~) ,  then d = 8 .  

(h3) ,.v'~(d) <~ w;:(g(~r ~ ( f ( d ) ) .  

We set of simplicity d '  = f ( d )  and d " =  g ( d ) .  Roughly speaking, 
we want to define d '  and ~r as follows: let d ~ S~ j, A'). This means 
that the corresponding configuration r ~ d percolates from OA to A' at 
level j but not at j +  1. Then one could define a new configuration cp" 
which is equal to q ) - I  on R+(A,k+ 1, ~p) and equal to <p on the rest. 
In this way cp" percolates from OA' only at level j - 1 .  Define now 
cp' = k  + ~p-  q~", M ' ~  cp', and d " ~  ~p" and more or less we are done. In 
other words, M'  is the portion of the slice ~p = k + 1 which is connected 
to OA, and d "  is what we get by pasting together what remains after 
extracting that slice. 

Things are a little more complicated because we want to define d '  and 
~r directly in terms of cylinders, the reason being that it will be much 
easier to prove properties (h~)-(h3). So we are going to mess around with 
cylinders a little bit, with the idea of reproducing a result similar to the 
stated above. 

We first define the prime and double prime operations on contours and 
then they will be extended to collections of contours. So, let F ~  Con§ k) 
with S(Fext)= + 1. Then set 

F =  {yo} urouF~uF~ 
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Fig. 4. An example of how the prime and double prime maps act on contours. Notice that 
F" is not a contour, but consists of two compatible contours. 

where  Y0 is the un ique  ex te rna l  cy l inder  in F and  

Fc= {~ ~ F:X(~) ~<k, 
there  is no  o the r  y' ~ F s.t. I ( y ' )  ~< k a n d  y-' ~ ~} 

Fb = {y ~ F\Fc: there  is y' ~ Fc  such tha t  y-' ~ ~} 

to= {~r\(rcurbu {~o}): i(~)~>k+ 1} 

Define also,  for any  cy l inder  y = (~, E, I ) ,  

y_  = (~, E -  1, I -  1), ~t = (~, E, I -  1), Yv = ( ~ ,  E -  1, I )  
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Now we let (see also Fig. 4) 

F ' =  {(yo, k , k +  1)} u {(9, k +  1, k): yaF~} 

r "  = (yoh u { y_ :  y ~ F,,} u { y .  : ~ re}  u G  

Remarks.  1. Some cylinders in { y ,  :y~F,.} u {(Y0)~} may have 
I(y)=E(y). It is understood that these zero-height cylinders are not  
included in F". 

2. In general F" is not a contour,  but it splits into a collection of  
compatible contours, as appears in the example in Fig. 4, where F"  consists 
of two contours. 

If ~ '  e WI(A, k), then let ~r be the subset of  d containing all those F 
such that S (F ,  xt) = + 1 and v(1-") n OA ~ (,~, v(l") n A' ~ (,0. We then 
define 

~ '  = {r' :  r ~  do} 

d "  = {y": y ~  do} v ( d \ d o )  

Proposi t ion 5.5. Let o~r176 j > k ,  and 
qr ~ ,_~", q~" ~ ~r162 Then: 

(i) We have 

(5.10) 

let ~o ~ , ~ ,  

qo,(x) = {~ + 1 if x ~ v ( d ' )  
if x r  

(ii) We have 

~,,(x) = ~cp(x) -  1 if x e v ( d ' )  
(~o(x) if xCvC~r 

(iii) If B is a connected cluster of R+(A, k + 1, cp) such that B inter- 
sects both OA and A', there exists F~A such that S ( F ) - + 1  and 
Bcv(F ' ) ,  i.e., B c v ( d ' ) .  

Proof. Parts (i) and (ii) are direct consequences of  the definitions. 
From Proposit ion 2.2, it is clear that there exists a contour  F whose 
external cylinder Yo satisfies 9o ~ B, S(7o)= + 1. 

In order to prove that B c  v(F') we must show that B does not inter- 
sect the interior of any cylinder in Ft .  Let then x ~ B; then we claim that 
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there is no cylinder 7 ~ F  with ?7~x such that  S ( 7 ) = -  1 and I(7)~<k. In 
fact, assume there is such a cylinder. Then, by Proposi t ion 2.2, we have 

~p(y) <~k, V), e c5?7 

and so there is a connected set surrounding x where ~o ~<k, which con- 
tradicts our hypotheses. 

This means no x e B  can be contained in the interior of  a cylinder 
)~sF,., so, as a consequence, Bcv(F' ) .  | 

P r o p o s i t i o n  5.6.  Assume (KI)-(K4).  Then for all n , j > k  proper-  
ties (h~)-(h3) hold. 

Proof. (hi) .~r W~-(A,k) by definition. Moreover ,  it should be 
fairly easy to convince oneself that  d "  is a compat ible  collection of 
contours. Take  now ~0, ~o" e f2 A such that  cp ~ ~ '  and cp" ~ sO". Since ~0 per- 
colates from OA to A' at level j (but not j +  1), and since ~o" ~>~o-1, q~" 
does percolate at level j -  1. In order to prove that  rp" does not percolate 
at level j it is sufficient to observe that, by Proposi t ion 5.5, ~0" = ~o - 1 on 
a set which includes all clusters of  R+(A,k+ I, cp) touching A'. So, we 
have ~ ' "  ~ S~ j - I, A'). 

(h2) Follows from (i) and (ii) of  Proposi t ion 5.5. 

We are left with the proof  of  proper ty  (h3). F rom (5.77 we get 

w~(.~') 
=RIR,_ 

t~ H w,,(d ) 

where 

R l =  
I-Ir~.~ I-I~,~ r wT,(Y) 

and 

rI H 1 

1-I 1 
Consider the definition of d " ,  and keep in mind that: 

- -1  

(a) If y e Fa, and so both E(?),  I(y) are at least k + I, then L,,(),)-% 
L,,(y_ ), so wS',(7) ~< w~',()J _ ). 

~n n (b) IDl()~o) ~< w~;((7o)l) wh(()Jo, k, k + 1)). 
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(c) If yeF,. ,  then Wh(y) =Wh(~' v ) Wh((~, k +  1, k)). [In this case, 
since S(~)= - 1 ,  w)', coincides with the unmodified weight Wh.] 

(d) For every contour F with S(F) = + 1 

v(F') --,-o/ Ur Y= U v(F,,) 
r y~  {~'o} u r o  

Then one easily gets 

R,<~ I-[ [w',:((),o,k,k+l)) I-I wh((~,k+l,k)) 1 
F ~ .~/o ~' ~ F,. 

= H H e-I1tl~'l-2q~'))e-Ph"(r') 
Fe.~/o 7EF' 

With regard to R2, we claim that 

2'e'Y'(v(F, ~'), wh,//(~r (5.11 ) 
R~ ~< I-[ I-I ny,- /-/(~r 

- r~.~,o :,~l~ol~ro2e ~(v(F,y),wh, 

Given (5.11) (we will prove it in a moment), and using Lemma 2.7(ii) to 
evaluate each quotient [remember that I (y )>~k+l  for all ye{yo} wFo 
and that A(J )=  ~ ] ,  we obtain 

%,(s~) 
w~;('~") ~< r~,o�9 exp[ I v(F')l (l.le-4pk+flhe-/~/4)] 

X H e-[ll~l+211qlY)e-flhlvlr'll} 
),~ F '  

~H[e--llhlvtF')I/3He--fll~l+211qtY)]=l~(~ ' ) (5.12) 
F ~ ,~r 7' ~ F '  

which concludes the proof of Proposition 5.6 and Lemma 5.4. 

Proof of Claim (5. 7 7). We observe that: 

(e) For each cylinder 7 in ~r~" (or more properly in some FE~/") ,  
there is a cylinder y' in d with the same base and the same sign 
as y. Thus if a cylinder is weakly compatible with every cylinder 
in d ,  it is also weakly compatible with every cylinder in ~/". In 
other words, /7(,~/)~FI(~I"), which implies 

2',~(V,w,,,H(~C"))>~2,~(V,w,,,ll(sr V V ~ A  
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(f) For the same reason the partition of A 

A = ( A \ v ( A ) ) w  U U v(F,?')=-Uv, 
F~.~t ye F 

induced by the set of all cylinders in sr is a refinement of the 
analogous partition of A induced by the cylinders in sO" 

A=(A\v(..d"))w U U v ( F , ~ ' ) = U 6  
F~.~t" yE F j 

Thus 6 = Ui~(i ,  vi for some c(j) = {i], i,,...}. 

In this way we have obtained for each factor appearing in the denominator 
of R_, 

"'J ^ H ( ~ d ) )  >i 1-[ 2'~"(vi, w,,, H ( d ) )  2"'J(e,,, j Wh,/7(A"))>.~2,, (v/, Wh, 
i~c(j) 

As a consequence, 

""'___2__ / 7 ( ~ ) )  R, ~<I-I z,, (v;, Wh, 
'~' 17( d ) ) - i 2~ e (vi ,  Wh, 

where r7 i is equal to either ni or to n~ -  1 and, because of the definition 
of d " ,  

{v,-: t ~ ; = n , -  1} = {v(F, y): F ~  do and y e  {yo(F)} u F , }  

which proves the claim. II 

At this point we are almost done with the estimate of 
h,n it A (S+(A, k + j ,  A')) ("half" of Theorem 5.1 ). What is left is the following. 

I . e m m a  5.7. Assume (K])-(K4) and let 

Then 

I~(~r  H [e--Bhlv(F)l/3 H e-B(l~l-2q()'))] 
F ~ .r:l ), ~ F 

f f ( ~ ' )  ~< e -BN/3~ (5.13)  
.n/~ W/+(,4.k) 
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Proof. We recall that from the definition of Con+(A, k) it follows 
that q(7) is nonzero only if 7 is the external cylinder in F. Given 
d e  W;- ( A, k ), consider the set 

U=(r?~ ' v(I'))"=v(d)" 

and write its boundary as a union of connected components 

~U=q,  u ... uJl .= {q} 

In this way, to each d we can associate a collection {ll} of closed sets of 
dual edges q ~ Cs(A). It is easy to check that: 

(i) If q,, q2 e {q} with r/l :/: q2, then rT~ rn ~_ = ~ .  

(ii) If q r~6A •;ZJ, then Ili[/>,9, where 0 = e  zJCn~ is the maximum 
diameter for an elementary cylinder. 

(iii) For each d e  W[(A,k) 

Z Z [ l ~ [ - 2 q f l , ) ] =  ~ [ql-lOAI (5.14) 
Fe.~./ 7 ~ F  tlE{Jl} 

(5.15) 
(iv) {q} determines d in a unique way, i.e., distincts d ' s  produce 

distinct {ll}'S. 

We denote by Y the set of all collections {q} which satisfy (i) and (ii). 
Let us divide the d ' s  in W;-(A, k) into two groups, depending on 

whether Iv(d)l ~>C 2 IAI or Iv(d)[ <if2 IAI. We call S~(S_~) the contribution 
of the first (second) group to the sum (5.13). 

By definition of Y, Proposition A1.2, and the subsequent remark 

~. 1--[ e-Pl'~l<~exp(4Ne-31~+ N2e-~3/4)p~ 
I , ; }  ~ Y ,l e {,ll 

Then, using (iii), we have 

hc2 (-/~ Y'. I,ll) S,~<exp(-fl~ I A I + f l I 6 A I ) Y .  exp 
I'1} ~ Y ,1E {,11 

<~ exp [ ,A, ( -  ~ C- + e-'-~/'~)P~ + ,SA[ (fl + e-3/~)] 

( flh( 2 2fl ) exp(-2fllSAI ~<exp - - ~ -  IAI+ IOAI ~< ) 
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We have used the inequalities flh(2> 100e-PS/-~ and N/> 6 4 h - ~ ( - '  and the 
fact that fl is large enough. 

If [v(~)[,<(2lA[, then, by Proposition A1.4 we know that 
[6U[ =Y~u~lul 111[ >~4.2N. Furthermore, since ~.r~.,/~y~rq(7)~<4N, (5.14) 
implies 

X ~ [1~71-2q(7)] ~>0.2N (5.16) 
F ~ . ~ /  ) ' ~ F  

and 

~ 191~>2 ~ ~ q(7)+0.2N~>2.05 .~ .~, q(7) (5.17) 
F ~ . e /  ) ' ~ F  F ~ . e /  ) , E F  F~ . , a /  } ' E F  

From (5.16), (5.17) we get 

E E 
F ~  ,,:J } ' E F  

N 1 
[191-2q(7)] ~>]--~+~ ~ Y'. [Ifl-2q(7)] 

F ~ . ~ /  } ' ~ F  

N I 
~>~+~6r~ ~ ~ 191 

�9 ) , ~ F  

and then 

,~(~c/)<~e-(p/,O)NFi[e-(,/3~ahh,(r~lHe-(a/,oo)l~l ] 
F ~ .~M ), ~ F 

Therefore one finds 

.,~'~ H,'/+ (A.k) 

--exp(-~) Z 
.r/(~ Wt+(..l.k) 

H. H exp[- ~,~,..~,-~,~,~.~,, ..,~,-~,] 
F ~ .~,/ y ~ F  

-<~xp(- ~) z' 
,r IV/(A.k) 

x VI I-I exp[-fl[Y[JL(Y)-~l[v'f,Y)]'[l'y)-k[] 
F ~ , ' ~  } , ~ r  
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where 5-7 means that the sum is restricted to those ~"s  such that 

v(F)caOA:~f2J and [Pexp[ >~ N/4 V F e d  

because, if d e W~-(A, k), each Fe_~r must intersect both OA and A'. We 
now proceed as in the proof of Proposition A.2 and, using Proposition 2.9, 
we find 

S2 <~ exp(-- -~ N)exp(lOAl e-~/9~176 <~ exp (-- f l  N) 

So we have obtained 

E 1~('5~t) <~ SI + $2 ~ e-(fl/3~ [I 
~/~ H//+(A.k ) 

5.3. Bounds on the Probabil i ty of Percolation Below k and 
Proof of Theorem 5.1 

Unfortunately the arguments given above are not sufficient to treat the 
negative case, i.e., to provide a good upper bound on the probability that 
a boundary condition n < k percolates well inside the bulk. Our goal is 
then to add a few modifications and show the following. 

kemma 5.8. Assume (KI)-(K4). Then for all 17 < k 

-h .n  lt~ (S_j(A, k - 1, A')) ~ e -~ 1/8ook)pN 

The reason why our previous arguments need to be modified is the 
following: in (5.12) there is a term 

exp[ --flh Iv(F')l + Iv(F')l (1.1e -4p* + flhe-P/4)] 

which, because h s lk(fl), is smaller than exp[ - ( f lh /3 )  ]v(F')l]  and this is 
enough to allow us to sum over contours. When we do the same with 
negative contours, the analogous term, because of Lemma 2.7, becomes 

e x p [ f l h  I v ( r ' ) l  - I v o ( F ) l  e - 4 f l ( k - 1  } ..~_ I v ( r ' ) l  e - 4 f l ( k -  11-#/4] 

where we have set 

vo(F') = [_) Vo(F, y) and Vo(F, y) = v(F, y)\0v(F, y) (5.18) 
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The second term is usually dominant because of the factor 
exp[ - 4 f l ( k -  1 )], which is larger than flh, but the trouble is that there are 
contours such t, hat 

Ivo(F')l ~ Iv(F')l 

Think, for instance, of somthing like a negative pyramid obtained as a 
collection of centered cylinders with square bases of sides s, s - 2 ,  s - 4 ,  
s - 6  ..... r. In this case Iv(F')l=s 2, while IVo(F')l ~<r 2. For this kind of 
contour the operation of cut and paste is not useful, because one can have 

wT'(d) > 1 
n tt wh(d ) 

So our idea is to cut and paste those contours for which, say, 
[vo(F')]/> �89 As for the other contours, they are supposedly very 
depressed because they have a large amount of boundary, so it should not 
be too difficult to sum their weights directly. 

Proposition 5.9. Assume (KI)-(K4). If F e  Con(A, k) with 
S(F) = -- 1 and v(F') n OA # E3, v(F') n A' # ~ ,  then one of the following 
assertions holds: 

1. Z , E r  lYl >_-4k 16AI. 

2. [vo(F')[ 1> �89 ]v(F')[, where [vo(F')[ is given by (5.18). 

3. Z~,~,-, [1~1-2q(~,)] >>-(1/160k)[Z~,Er, I~1 + ~ l v ( r ' ) l ] .  

Proof. If x~v(F')\vo(F'), then there exists y ~ F  such that 
x~Ov(F, y), so there exists y ' ~ F  such that doo(Y',x)= 1/2. On the other 
hand, for each dual edge e* there are six lattice sites whose oo-distance 
from e* is 1/2. This implies 

Iv(r')\Vo(r')l ~<6 ~ I~1 
y~F 

If one assumes now that both assertions 1 and 2 fail, one gets 

]v(F')] ~<2 Iv(r ' ) \v0(r ' ) ]  ~ 12 ~ I~l ~48k  16Al-<~ IAI 
y E F  

On the other hand, by applying Proposition A.4 to U=A\v(F')  (see the 
proof of Lemma 5.7) and using the assumption that assertion 1 fails, we 
obtain 

), e F '  
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Proof of Lemma 5.8. The proof  is quite similar to that of Lemma 5.4 
(plus the estimate of Lemma 5.7). So we are going to define two maps 
d ~ - - , f ( d ) = d '  and d ~ - - , g ( d ) = d "  in such a way that we can use 
Proposition 3.3 successfully. The main differences from Lemma 5.4 are as 
follows: 

(a) g maps S j(A,  k -  1, A') into the whole space WI(A, k), so we 
cannot iterate the inequality. 

(b) The definitions of both f and g will depend on which condition 
in Proposition 5.9 is satisfied. 

(c) In Lemma 5.4, g is defined by modifying all contours F such that 
v(F.') intersects both OA and A', because we wanted to make sure 
that g mapped S ~  ') into S ~  Here we 
cannot get that anyway, so we modify only the "first" contour 
which has a nonempty intersection with both OA and A'. 

Here is how it works. Let 

Y= { F e  Con(A, k): S(F) = - 1 and v(F') c~ OA ~ ~J, v(F') c~ A' ~ ~ }  

If d ~ S_ta(A, k - 1, A'), we choose F ,  E ag as the "first" contour in ag n Y 
[Proposition 5.5(iii) shows that there exists at least one such contour, and 
one can choose the first by ordering the set of all contours in any arbitrary 
way]. We then define (for any contour F~ Y)Fo, Fb, F c, F', F" exactly as 
in Lemma 5.4, but with all signs reversed (each ~ is replaced by a />, each 
+ by a - ,  and vice verse). 

Then we write 

Y= YI w Y2 u Y~ 

in such a way that the statement j of Proposition 5.9 holds for all F e  Yj 
for j = 1, 2, 3 (by taking differences one can assume that the Yj are pairwise 
disjoint). Accordingly, we define the maps f and g as 

f ( d ) = J ' r ,  if F , ~  Y, 
i fF,  e II2 u Y3 

ag ~ _ _fd\{F*} if F e Y ,  
g( 

) = ( a g \ { F , } u F .  if FeYzv0Y3 

Now we want Y' to contain the image of S_ j (A ,  k -  1, A') under f So we 
set 

r ;=r , ,  i = 2 , 3  

Y'= r ; w  r , 'w ~'; 



SOS Surface Interacting with a Wall 883 

(by taking differences again we assume that the 
If d e S_.I(A, k -  1, A'), then f ( d )  e Y'. We claim that 

w~',(d) <~ w'],(g(d)) i f ( f  ( d ) )  

where, for any F e  Y', 

Y: are pairwise disjoint). 

exp ( -  ~ flk l6AI ) 

x 1--[ exp - ~ 191 1 ;.~r I L(y)-~Dhlv, r,y)l.ll(~)-k,] 
~r'(F)= if Fe Y~ 

exp { 1 -~flhlv(F)l-fl ~rEl~l-2q(y)]} if reYj  

x fl 1 e p{-1--ff~[-~lv(F,l+;.~r 191] t if F e  

Once we believe in (5.19), (5.20), by Proposition 3.3 we get 

(5.19) 

(5.20) 

-11 tit r  lLi t~_.l(A,k-l,A'))<<. ~" ~F(F) (5.21) 
F ~  Y' 

We are going to estimate the RHS of (5.21) first, and then we will prove 
(5.19), (5.20). We write 

Z Iv(F) = X| -1- X 2 "~ .X'3, where X; = ~ ~5(F) 
F~: Y' F ~  YI 

Then 

1 Xl <~ exp ( -  -~ flk ldAI ) 

. z 1 
F ~ C o n ( A , k )  ;,~ Y 

u ( F J ~ O A r  

1 

• Y. l-lexp[--~IflL(y)--~,hlv(r,y)l.ll(y)--kl 1 
Fs Con(A,k) "/ s F 

t,(F) ~, 0 

1 <~ exp (-- ~ flk ldA[ ) 

822/82/3-4-18 
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by Proposition 2.9. To estimate X2, we use Lemma 5.7 (replacing flh/3 with 
flh/5 does not change the result or the proof) and we get 

X 2  <~ Z e - ( l / 5 1 # h  lt'(r)l H e - l l ( l ~ l -  2q~ <~ e - ~ 1 7 6  

,~f ~ W['(A,k) ~,,~ F 

As for X3, we observe that X3 ~ Con-(A, k), so, if F s  X3, 

Iv(/-')l = ~ Iv(F,g)l.  I I (y) -k l  
y E F  

Moreover, each contour in X3 intersects OA and A', which implies 
IFox, I 1> N/2. Thus by Proposition 2.9 

F ~  Con(A,k)  
v(l') r~ OA r ~ ,  [ ~'ext I /> N[2 

Adding up all terms, we obtain 

f i h ' " '  S " A ,,1 I _ 1  I, , 

Let us now go back and 

�9 F e  Y). Since d "  
and (2.10), 

k - l , A ' ) ) ~ <  ~ ~(f)<<.e -l/8~176 
F ~  Y' 

prove (5.19), (5.20). 

= ~ \ F . ,  we have H(d~)~H( .~e) ,  so, by (5.7) 

,, k H(do)) Wh(d) = 2,.(A, Wh, 

and, by (ii) of Corollary 2.8, 

H 
F ~ .~" 

~,7,(r) ~ w7,(;r .',7,(r.) 

wT,(~) 
ii tt Wh(d ) 

F 
H exp | - - ( f l -  1)I~1L(y)+2flq(y)L,,(y) 

k 7 ~ F .  

- l f lh3 Iv(F, Y)I" 110')- kl] 

By observing that, since S(Fext)= -1 ,  

~, 2q(y)t , , (~,)~2kl~AI,  ~ 1~l~4kl,~AI 
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we get 
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[191L(y)-2q(y)L,,(y)] ~k ISAI +�88 ~ 191L(7) 
y ~ F .  ~,, E F .  

hence 

w;:(~r 
t! tt ~<exp ( - ~ k  [6A[)yI~r.exp[--~lglL(y)--lflhlv(F,y)l.lI(7)--k[] 

�9 F~ Y2. In this case, by definition of Y2, we have Ivo(F')l >t �89 
Thus one can proceed as in the proof of Proposition 5.6 and get 

RIR,_ 
�9 "1 i t  w,,(~r ) 

where, letting 7o be the external cylinder in F , ,  

R.<<-[w~i((yo, k,k-1)) H wh((9, k - l , k ) )  1 
7 ~ ( F . ) c  

~e--llhv(F'*) H e-/Rlyl-2q(}')) 

and 

R. ~ H 2 ~ ' ( v ( I "  y)' w,,, H ( d ) )  
- ,,olyol u,r.i. 2'e~'+I(viF, y), Wh, H ( d )  

Using (ii) of Lemma 2.7, since since flh <.% �88 -4p(k- 1) one gets 

w;,'(~r 
tl tt wh(d  ) 

~< exp[flh Iv(F~)l - IVo(FDI e -4p'*-'~+ Iv(F,)[ e -4p'*- l)--fl/4"] 

X H exp[ --fl ]Yl + 2flq(?)] 

~<exp[flh [v( r , ) l -0 .49  Iv(r.)l e- '#(k- 'q H exp[ - f l  lgl +2flq(y)] 
)P G F~, 

y e  F~ 
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�9 F e Y3. This case is similar to the previous one. Using assertion 3 
of Proposition 5.9, we obtain 

-%< exp[ flh Iv(rg)l - Ivo(r,)l  e - 4 a ' k - "  + Iv(r~)l e -4fl(k-l)-p:4] ,tl tl .h(~: ) 

x ~ expl--p 191 +2flq(),)] 
re F, 

~<exp{ Iv(r , ) l  [Dh~-(/~) + e-B/4]} H exp[ - f l  191 + 2flq(y)] 

We can finally give the proof of theorem. 

Proof o f  Theorem 5. 1. Let n = sup.,.~a+A ~(x). By FKG, 

/t~'*(S +(A, k + j, A')) <~It~'"(S +(A, k + j, A')) 

-%< lim p~'"(S+(A, k +j ,  A')) 

By Lemmas 5.3, 5.4, and 5.7, we have, for all 17 > k 

h,tl PA (S+(A, k +j,  A')) <.fi~i"(S+j(A, k + j," A')) 

- h , n  0 = II A ( S + j ( A , k + m , A ' ) )  
m = j  

<~ ~. -/ .... o A,) ) e--(l/30)ag,, <~ e--(l/SO)aN J It A (S +j(A, k, 
;)1 = j  

On the other hand, by FKG, Lemma 5.3, and Lemma 5.8, 

i x ~ ( S _ ( A , k _ j ,  , /, I S A ~<e -()/s~176 A))~</x d ( _ ( , k - j , A ' ) )  

5.4. Free Boundary  Condit ions.  Proof  of Theorem 5.2 

We prove the theorem only for S+,  since the other case is identical. 
As we did for n b.c., we express the partition function with free b.c. by 

means of cylinders starting from level k whose weight is modified at the 
boundary 

w~(y) =exp[  --fl I~1 L(y) + flq(y) L(7)- f lhS(7)  lYl Z(~)3 
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where q(7)= 17 n 6A[. Thanks to Lemma 5.3, we know that for any x e A 

It~i~(S+(A, j, {x} )) <<.IY~(S+.t(A, j, {x} )) (5.22) 

Furthermore, if ~r ~ S+.I(A, j, {x} ), then there exists a unique F ~  d such 
that 

R+(A,j, ~Or)~X 

where ~Pr is the configuration corresponding to F. In other words there is 
a unique c on tou r / 'E  d which is "responsible" for the percolation from the 
boundary to x at level (at least) j. Thus, using Proposition 3.4, we obtain 

fl~'~(S+.,(A,j, {x}))~< ~. k ~ ( / ' )  
F: R +IA, j , ' .pFJ ~ x 

By Corollary 2.8 we can write for all FeCon(A,  k) 

ff,~(F) ~< #(F)  

= I-[ exp [ - ( f l - 1 )  l~/l L(7) + Hq(7) L(~,)-fl---h lv(F, 7)l . lI(y)-k,  1 
?,EI-  

We now want to give an alternative expression for uV(F) which corresponds 
to slicing the (positive and negative) shyscrapers into (possibly discon- 
nected) slices of thickness one. Take then the sets U"', m=3/2 ,  5/2 ..... 
defined in Proposition 2.2. It is clear that 

m = 3 / 2  

(only a finite number of terms are different from 1 ). Now we want to show 
that if Nh/> 10, then 

(fl-1) I,~U"\~SAI + ~  IU"I >~-~ I,~U"'I + fl~h4 Iu "1 (5.23) 

Assume in fact that I,~U"'\,~AI <~ ~I6U"'I. Then I~U"'n ~AI i> 91~U"'I, and, 
by Proposition A1.3, 

IU"'I >>. ~I,~U'I N 
Thus 

/~__h um I 2 I ~IU"I+l f lhNI6U"I~-~IU'I+l f l I ,~U"' I  
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which implies (5.23). Moreover, if R+(A, j, ~Or)~ x, then there is a ,-path 
from OA to x which is contained in each U" for m = k + I/2 ..... k + j -  1/2. 
Hence 

Going back to the standard representation in terms of cylinders, we find 
that for all F such that R+(A,j, ~or)~x, 

~(F)<~exp[-l f ld(A",x)j]  

xy~rexp [ - ~ l~l L(y)-fl~h4 [v(I', y)l " lI(y)-k[ 1 

Collecting all the pieces together, and using Proposition 2.9 to sum over 
contours, we finally obtain 

p~(S+(A, j, {x})) ~ e -'l122,pjd('l~'x) I 

6. ARBITRARY B O U N D A R Y  CONDIT ION II. CLOSE TO THE 
PHASE TRANSIT ION 

Now we want to extend the validity of Theorem 5.1 to the interval 
hE (h*(fl), h *  ,(fl)), provided that the size N of the box is large enough. 
In particular, N has to go to infinity when h tends to one of the two 
endpoints h*(fl), h*_ l(fl)- If we let [remember (4.2)] for each k 

�9 fNo(h) = ( (3h) - I  ~7(p, h) 
lmax{No(h), fl((3 lak(fl, h)] )-1} 

if h E I,(fl) 
if hE(h~+,(fl),hk(fl)) 

(6.1) 

we have the following result. 

Theorem 6.1. Let fl be large enough and he(h*(fl), h*_l(fl)), with 
l<~k<~km~,=[_ePr176 If A=QN with N>N(fl, h) and A'=Qlv, with 
N' = N -  2L2N/5_], then (letting ( = 1000-1) 

supp~(S+(A,k+j,A')wS_(A,k- j ,A'))<~e -(r176 (6.2) 
q ~ Q  
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Corollary 6.2.  Let ,8, h, ( be as in Theorem 6.1. Then there exists 
C(fl, h) such that  for all A =  QN with N>~Nj = L 8 / h  + 1/, 

sup IE~'~'~0(0)-E~'~"~0(0)[ ~< C(fl, h) e -~p</'-~ 

6.1. Proof of Theorem 6.1 

In Theorem 5.1 we have already treated the case h~Ik( f l )  for 
k = 1 ..... k . . . .  ; thus we now assume 

kln~x 

h ~ U ((hi(P),  h~-(,8)] u [h~-(p), h~._,(p))) 
k = l  

The interval [h ~-(fl), h*(fl)) is somewhat  special, because hg(fl)= +co, but 
it is also the easiest to deal with. In fact for h in this interval, we can choose 
any [~I , ( f l ) ,  so that, by F K G  and Theorem 5.1, the LHS of (6.2) can be 
bounded by 

sup I~ '~ (S+(A,  1 + j ,  A ' ) )  ~< sup Itr~'( S +(A, 1 + j, A')  ) <~ e -~r 
r E s'2 ~ t 2  

Since the case h ~ [h~-(fl), h*_ ,(fl)) is similar to the case h ~ (h~(fl), h~-(fl)], 
we will only consider this last possibility and choose then h e (h~(fl), h~-(fl)]. 
We also let a(h)=ak(f l ,  h). 

The difficulty we are going to face is the following: as long as h �9 Ii,(fl), 
we know, by L e m m a  2.7(iii), that  

hJI 
Z e (V) ~ e-ah I vii2 Vn :~ k 

h k  Z; (l,3 

and this yields a bound on the weights on contours  (Corol lary 2.8) such 
that they can be summed (Proposi t ion 2.9). On the other hand, we know 
from Theorem 4.1 that, if h ~(h,~(fl), h~-(fl)] and we include in the parti- 
tion function only cylinders whose diameter  is less then 1/la(h)l, then all 
cylinders starting from k or k + 1 are stable, so 

Z~ ,k + ' (V)  ~ e_,~t,Ol,, 1 
h k Ze" (V) 

This means  that  the bound for the weight of  a contour  given in Corol lary 
2.8 will be replaced by 
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where h'(n)=h except when n = k + l ,  in which case h'~a(h)/fl. The 
problem is that, since a(h)"~0 when h--. h*(fl), then h' will be too small to 
"beat" the entropy given by the sum over cylinders whose minimum 
diameter is fixed, if h is too close to h*(fl). 

To fix this we modify the definition of elementary cylinders. A cylinder 
is here called elementary if does not touch the boundary ~A (as in 

Section 5) and 

where 

diam ~ <~ O'(fl, h, E(y) ) 

O,(fl, h,n)=fS(fl)=eP:/]~ if nr  
(([a(h)[) -I if n=k ,k+l  

This modification of course affects the definition of many objects, such as 

Ce( V, k) , / ' , ,  ~0 I, Co*/( V, k), W( V, k), W~( V, k), Con( V, k) 

which, when we use the new definition of elementary cylinder, will be 
respectively denoted by 

Ce,( V, k), Fr ,  q~r, C ' r (  V, k), W'( V, k), Wr( V, k), Con'( V, k) 

Let us also define 

We observe that 

, {h if n # k + l  
h ( n ) =  [a(h)[/fl if n = k + l  

~9'(n) ~> ~9 for all n (6.3) 

In fact, by property 7 of Theorem 4.4, we have 

a(h)=flh+ ~ [ ~k(A'w~') ~+~(A'w~'! 1 
A~o [AI IAi 

and, by property 6 of the same theorem, 

[a(h)] <<.flh+ • [[~k(A, w~,~)[ + ]~k+~(A, w~f)]] <~flhT(fl)+Ze-P<~e -p/z 
A ~ 0  
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We now claim the following. 

Proposi t ion  6.3. Let fl be large enough and he(h*(fl), h~-(fl)] 
with 1 ~< k ~< kma.- = LePr176 If H is as in Lemma 2.7, then for each simply 
connected finite V, n 4: k, 

exp[ - ( n - k ) flh l VI ] 2~,( V, w ,, , /7)  
2~,( V, w,,, 17) 

[ '  1 ~<exp --~flh'(n) I Vl" I n - k l  + 15VI e -//U6 

and for each Fe Con'(A, k) 

~'h(r) ~< I-[ exp[ - - ( f l - -  1)191L(y)-- �88 7)1. I / ( 7 ) - k l ]  
),eF 

Proof of Theorem 6.1 Given Proposition 6.3. Let h e(h*(fl), 
h~-(fl)]. Then, by FKG and Theorem 5.1 

lt~q'(S_(A, k - j ,  A')) <~lt~nP~'q'(S_(A, k - j ,  A')) 

<~ e -~r V j>0  

Similarly, ifj>~ 2, 

tu~'~'(S +(A, k + j, A')) <~lt~++,~P~'q'( S +(A, k + j, A')) 

( )~_flN(j_l)l ~<exp[ ( k + l  (6.4) 

So the only interesting part is proving that there is no percolation at level 
k +  1. The idea is the following: we define a square A" such that 
A' c A "  c A .  Then we know that (with high probability) the b.c. do not 
percolate from OV to A" at level k + 2. From this it will follow that on the 
O+A" we have "almost" k + 1 b.c. Then, all we have to do is to treat the 
case ff = k + 1. 

Let then A " =  QN,,, where N"=N-2[_N/41-2 ,  and consider the 
event 

F = S  +(A,k + 2,0+A ") 

By (6.4), Proposition A.1, 
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itJ;fq'(S+(A, k + 1, A')) 

[ ] < ~ p ~ ' ~ ( S + ( A , k + l , A ' ) J F " ) + e x p  (k+  1),_fiN 

~<exp I (k+l)2flNJ + sup 
V : A "  c V ~  A 

V connec ted  and  
s imply  connec ted  

II1~. k+  I(S+(A", k + 1, A')) 

(6.5) 

so we have to estimate the second term. Let now 

G={q~Et2A" ~ ( ~ o ( x ) - ( k + l ) ) + < ~ l O + A " l }  
A. E O+A" 

where (A)+ means max{A, 0}, and, as usual ( =  1000 -l. Obviously G is a 
negative event. Thanks to FKG and Proposition 3.5 (notice that O+A " 
does satisfy the hypotheses) we know that, for any simply connected V, 

pJ~k+ I(G~ ) <~/tJ~.++,(p),u + t(G~ ) ~< e-(4/5000)#N"<~ e--(l/7OO)flN (6.6) 

On the other hand, using FKG again, we have 

where 

Clearly 

p~f+ '(S+(A", k + 1, A') I G) ~< sup p~'~(S+(A", k + 1, A')) 
q ~ G  

t~(x) = r v (k + 1 ) 

(6.7) 

I~P(x)--(k+l)l<~lO+A"l V~D~G 
.xE~+A" 

so, regarding the probability as a quotient of two partition functions, we 
have 

sup ~A"d"~'tr k +  1, A'))<~e~US~ k +  1, A')) (6.8) 
q, E G  

As we did in Section 5, we express the partition function with k + 1 b.c. as 
a sum over a collection of contours starting from level k and whose weight 
is modified at the boundary because of the b.c. So we write 

zh.k + t( A,,) = e -pl, k H"I--plaA"I2k(A ' W~, + 1) 
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where 

k + l  2"(A,w,, )= Z 2e~'(A, wh, n(o~)) 1-I -k+, w h (F) 
.~Z ~ WI,IA,k) F E d  

k +  and the modified weight for a cylinder w h J(y) is defined in (5.3), (5.4). 
Given a contour F, we now define F '  as in Section 5.2. Then, letting 

Y= {FECon'(A",k):S(F)= +1, v(F')nOA" ~ ;~, v(F')nA' ~ ;Zi} 

we claim that 

h k +  P,i" ~(S+(A",k+I,A'))<~ ~ -k+ w h t(F) (6.9) 
F ~ Y  

In fact, Lemma 5.3 and statement (iii) of Proposition 5.5 imply 

p~,k + '(S +(A", k -t- 1, A')) 

- h , k + l l c  I A u  IRA,, ~o+.t~,* , k +  1, A')) 
- h ,  k + 1 <~Pw' {~r  F~Y} 

~< ~ I'-h'~+'{ d e A , ,  Wr(A",k+ 1):~r F} 
F ~  Y 

Now (6.9) follows from Proposition 3.4. From the definition of w k+ ~(y), it h 
is clear that, given a contour F with S(F)= + 1, only the weight of its 
external cylinder is affected by the modification at the boundary. Thus, if 
~,. is the external cylinder in F, we have 

W~ + l(y.) __. Wh(y,) e21S,l(~..~ 

k +  while w h '(y) = wh(y) for all the other cylinders in _r'. So, by Proposi- 
tion 6.3, 

ff~+'(1-')~eZ/~qtr*'ff(F, f l-- l ,~) Vl-'~Con'(A",k) 

where we have set 

�9 (F, c, c') =.IX exp[ - c  1~1 L(y)--c 'h ' ( I(y))Iv(F,  Y)I' I I ( y ) - k l ]  
y ~ F  

We also observe that, because of Proposition 2.9, we get 

F e  Co..n'{ A " , k  ) 
F ~ x  

(6.10) 
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At this point we proceed roughly as in the proof of Lemma 5.7, i.e., we 
divide the terms in the sum (6.9) into two groups: those with 
[v(F)l >~-~ IA"l and the others. Let us call Y1 the first group and Y2 the 
second. Since for e a c h / ~  Yz we have 

ff~ ( F, fl-- l, fl) <~ e-~l/8'/Jhmr ( F, fl--1, fl) 

where h,,,=min{h, h'(k+ 1)}, thus, taking into account that 
N"~> 200((-'h,,) -1 and q(y,)<~ I~A"I and using (6.10), we find 

~. W h-k + I(F) -%< [~A"] e -I I/8)flh"r afll6A"l <~ e -#16"1"1 ~ e -2fiN (6.11) 
F'~ YI 

If F~  Y2, then we claim 

( f l - 1 )  E If'lL(~')-2flq(r,)>~-~N"+2~ E I~l L(y) (6.12) 
~,eF ~ '~F 

If one accepts this, then one gets 

F~ }% F~ Y2 

~< I~A"I e -I vu~pN"<~ e-~l/,-~-um (6.13) 

To prove (6.12) we write, for F e  ~ ,  

I~1 t (y )=  ~ I~1 + R (6.14) 
~,'~F )',E F '  

where R/> 0. But, since Iv(F')] ~< Iv(F)I ~< (2 IA"[, v(F') ~ OA" # ~ ,  and 
v(F') h A ' #  ~3, we can use the argument in the proof of Lemma 5.7 and 
get [q (7 , )=  q(F'~xt)] 

I N ,  , 1 ~ I~1 
~. [~l - 2q(y,) ~-~- 6 + 1--~ ,~ r, 

)'E F '  

which, together with (6.14), implies (6.12). 
From (6.7)-(6.9), (6.1l), and (6.13) we see that, for each simply 

connected V such that A" c V, 

l h , k + l [ ~  ( A H ~ e - - l l / 5 0 ) f l N  l v , ~ + , -  ,k+I,A')IG) 
which, together with (6.5), (6.6), gives 

I~(S§ 2(k+ 1),_fl N | 
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Proof of Proposition 6.3. Let V be a simply connected finite 
volume. By Theorem4.l all cylinders with E(7 )=k  are stable, as well as 
those with E ( 7 ) = k +  1 and diam ),<~O'(k+ 1). So 

h k h k + 1 h, k + 1 Zh'k( V) Ztr (V) and = z,,: (v)=z,,,,,~ (v) 

where we have set 

Then we have 

h k +  1 Z,; (V) 

Zh" r V) = e-#h"lrqZ'~,( 1I, II, 'trh 
e'.tr~ h ! 

7 h ,  k + l [ v  ) Z t  rh,k+l ( V )  Ztrh 'k+l ( V )  Ztrh'k( V)  ~ e', tr <~ 
h,k Z h'k ( V )  Z h'/c ~ V') Z t rh ' k (v ' )  h,k Ze, (V) --,,'.,r, --e'.,r, Z ,,,.,,( I"3 

Using the cluster expansion for the truncated partition function, we get, for 
17 > O, 

log h.,, W""  r Zt ,  (V) - log --e'.tr'. V) = y'  ~"(A, wT) ~< I VI e-P~ (6.15) 

diam A > ,9'(n) 

where we have used Theorem 4.4, property 6. Also, by Proposition 4.9, 

[logZJ,'ik+L(V)--logZ~ik(V)+a(h)[<<.[6V]e -pr (6.16) 

SO we have obtained 

Z',) k+ ' (V) e--fl.9'(k)/4-] --]1(/3} ~<exp{ -IVlUa(h)- + 16VI e 

. oxp [ , e-' '31 --~ a(h) I Vl + ISml 

Furthermore, i f  17 =~ k, k + 1, then 3'(n) = 3(n), while O'(k + l ) >13(k + 1 ) by 
(6.3). Thus, by (iv) of Lemma 2.?, 

Z,., ( V ) /  .... Z ,., ( .... Z ,.,h'k + l( V )  h.,, ,,.k+ l( V) hk J,.~ ~< Ze (V) Z e, 
Z~: (V~-  Z h ' k + t ( V ) ,  _,,, Ze, (V) Z e/''k+ I(V) Ze.h'k(V) 

<~ e~p [ ~ flh l Vl . ln - (k  + l )l +16Vl (e-aUS + e-a~/3) 1 

<~ exp [ - ~  flh lgl . ln-kl  + l&V] (e -a'/6j 

The second statement follows easily from the first (see the proof of 
Corollary 2.8). l 
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6.2. A Cluster Expansion for E~(0) 

Here we want to find a formula for EJ~k~p(0) based on a cluster expan- 
sion that will be crucial in the proof of Corollary 6.2. 

We introduce a modification of the magnetic field at x = 0 and define 
for ).e0L 

h if x:/:O 
h~.(x) = h - 2/[3 if x = 0 

In this way, the weight of a cylinder y such that ~ 0 is given by 

Wh~.(~) = Wh( ~ ) e ~'s~y~I-~'~ 

while Wh~.(y)=Wh(~') for cylinders whose interior does not contain the 
origin. The partition function can be written as 

z h 2 " k (  V )  = e-Ph~kl vl2k ( V, whx) 

where 

2k(v ,  wh~.) = Y'. I-[ ~',,~(y) 
F~C~*,,(V,k) ) ' E F  

We want to prove the following. 

P r o p o s i t i o n  6.4. Let fl be large enough, h ~(h*(fl), h~+~(fl)) with 
k<~k . . . .  =l_e/Jr176 Then there exists 2o =,to(fl, h ) > 0  such that ~h~(Y) is 
differentiable with respect to 2 in the interval I~-I <,to, and, for each 
cylinder ), with E ( y ) = k  

I~"hs.(~' ) ~< e -Isff 'lLl~'ll2 (6.17) 

d I~'h,~(y ) -~< e -l l l f ' lLr (6.18) 

for all [21 <,to. Furthermore, for each simply connected finite V containing 
the origin 

E ~ k ~ ( 0 )  = k + ff~2 ~"ha(Y) o exp [ -- ~ ~r(~, if'h)] (6.19) 
y ~. C(V ,k )  = ~ c ~  C(V ,k )  

~ 0  ,~c~ [~.] ~ O 

where [y] is the set of all cylinders which are not weakly compatible with 
7 and qo r is defined in Theorem 4.4. 
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An important consequence of this proposition is the following result. 

C o r o l l a r y  6.5. Let fl, h be as above. Take A = Q N  and Vc=Z-" 
simply connected such that V= A. Then 

IE';)k~o(0) -- E~'*~o(0)l ~< e-PN/'S 

ProoL Let 

gv(y)=exp[-r ] 

Then, by Proposition 6.4, 

I E'~kq~(O) - E~.k~p(O)l 

-< E 
y e  C( I/,k)\C(.,l ,k} 

~ 0  

d ~;'h~.()') a=o Igv(~)l 

+ d 2 
Y~ 7/'~"(Y) =o }'e ClA,k}  

2 ~ 0  

Igv(Y)l I1 -eX"'q =S~ +$2 (6.20) 

where S~, S_, are the values of the two sums, and 

X(y) = log gA(7) _ ~. ~T((, ~'h) (6.21) 
gv(Y) r v.kl 

Since Igv(~')l ~< 1, then first term in (6.20) can be (upper) bounded by 

Sl <~ ~ d ~T'ha(Y) ~< e -pN/8 
}'~ C(A,k} ), = 0  

(6.22) 

thanks to (6.18). As for the second term in (6.20), we observe that each 
appearing in the sum (6.21) has (n(V\A)=~ ~. Also, since it contains at 
least one cylinder ~,' which is not weakly compatible with y, we have 

d(~, y) ~< 2 

and so [see (4.4)] 

II~ll >~d(~, OA) 
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By consequence, using property 3 of Theorem4.4  [ remember  that the 
weights ~'h(7) satisfy the theorem's hypotheses with c = 1/2], we obtain 

X(y) <~ e -(3/8)aa~f'a'l~ ~ I~r(~, ~,,)1 e~3/8)PlICpl 

~< I~1 e - ~ / ~ p ' ~ e ' o ~  (6.23) 

We now divide the terms contributing to $2 into two groups: Y' is the set 
of all cylinders y such that d(~, OA)>~N/4 (and ~ 0 ) ,  while Y" contains 
those 7 with d(~, OA)<~ N/4 (and ~7~ 0). Accordingly, we write S,_ = S'2 + S;. 
If 7e  Y', then, since I~1 ~ <4N2,  we find X(7) ~< 1/10, and so 

[1 - eX()')[ ~< 2 IX(y)] ~< 8N2e -(3/8)fla(:.,gA) <~ e-(l/3)fld(~,OA) 

Hence, considering that d(~, OA) + I~1/> N/2 and using (6.19), we find 

S~ <~ ~ e-flat~'~'4)/3e -pI~'IL~;'I/3 ~ e-.ad(~'c~"l)/3e -fll~l/4 

),~ Y' ~ CBIA) 
~ 0  

<~ e-fiN~9 ~ e - (  I/lO0)lal ~< e-fiN/9 

~C~(A) 
~,~0 

If, on the contrary, y~ Y", then I~l >>.N/4 and 

J 1 -- eX(;'q <. e xt;') <~ e I~1 

Thus 

S~ <~ ~.~ e -tl/31pI~ILI~')+I~I <~ e -tl/13)flN 

),eC(A,k) 
~o .  li;I >I N/4 

Finally, we obtain 

E'~kqo(O)--E~/kq~(O)[ <~S, + S" + S~_ <~e -aN/'5 I 

Before starting with the proof  of Proposi t ion 6.4, it is convenient to 
present some simple facts as lemmas. 

Lemma 6.6. Let fl, h > 0. Then there exists 2o(fl, h) > 0 such that if 
121 < )~o, then: 

(i) For  all V c c Z  2 such that V~0 and for all n > 0  

E h n d h ;i 
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(ii) 
(2.4)] 

For  each cylinder 7 such that  y~ 0 and for all n > 0 [ r emember  

h,..,, ,,, + d 
E v (q~(O)]f2:)=~-~logZh~'"(~7,  + )  

Proof. The only thing to check [ r emember  (2.3)] is that  the quan- 
tities 

exp[--flHh~'"(~O)], y '  exp[ -- flHZ~'"(r.p) ] 
~p ~.Oi-  ~p e .@~ ' +  

can be differentiated term by term. For  this to be true it is sufficient to 
check that, for instance, 

sup d exp[ - f lH~ 'o (~p) ]  
~eQv 121 < 2 0  

~< y~ ~o(0) expE-~nJ~:*~'"(~o)] < ~ I 

L e m m a  6.7.  Let fl be large enough, he(h~(fl),  h*_~(fl)) with 
1 ~<k~<kma x. Then there exists 2o=20(fl ,  h ) >  0 such that  if 121 < 20, then 
for all cylinders ? such that  ~ 0, for all n > 0, S = ___ 1, 

/12, n t~, S E: (q,(0) I n ~2; )~< + k + l  

Proof. Let 

G = { 9 ~ I2;: q~(y)/> n for all y e ~7} 

Using an oppor tune  coupling of two Glauber  dynamics,  it is easy to show 
that 

(6.24) 

in the F K G  sense. The p roof  is quite standard; one can see, for instance, 
Theorem 2.9 in (~hapter I I  of  ref. 12. Tha t  theorem deals with {0, 1} ran- 
dom variables and with the probabil i ty measures which assign a positive 
probabil i ty to each configuration, but it is not too difficult to modify the 
proof  in such a way that  our  situation can fit in. One can take, for instance, 
the standard coupling (12) of two "Metropol is"  dynamics reversible with 
respect to the two probabil i ty measures appearing in (6.24). In this way 
one avoids any occurrence of zero denominators  in the transition rates. 

822/82/3-4-19 
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Thus, by just changing variables ~o(x) ~ ~o(x) + (n - 1 ), we get 

h,~. n /a)~, E e (~ (O) IG)=E  e =(cp(O)+(n-1)) 

If we now choose some/~ ~ I~+ i(fl), by FKG and Proposition 3.6, we have 

E~;.'l(cp(0)+(n 1))~<n--1 ' . ~k  -- t r ~ "  + l ~ p ( 0 ) ~ < n - l + k + 2 = n + k + l  II 

We now go back to the proof of the proposition. 

Proof o f  Proposition 6.4. Choose 2 o such that h ___ 20 e (h*(fl), 
h~-_ i(fl)) and let y be a cylinder with E (y )=k ,  I (y )=n ,  S (y )=S ,  and such 
that )7~ 0. To show that 

~%(7) ~< e -pill  LI~,t/~_ 

one  can repeat the proof of Theorem 4.1 step by step, replacing in 
Steps 2 4  the hypothesis h ~ [h*(fl), h;-(fl)] with h(x) e [hff(fl), h~-(fl)] for 
all x, where h is now a variable magnetic field. There is only one thing to 
change: in the proof of Step 3 we consider separately the case of elementary 
cylinders in order to avoid the possibility that 

I&, Ij >> I~1., 

[it could happend that J ( e ) = (  for all e e l ,  but J =  1 on 6~7 \~],  and make 
an explicit appeal to (iv) of Lemma 2.7. In our case, however, J =  1 
everywhere, so we always have 

16~.,. I ~< I~I +4~<2 I~I 

Therefore we can treat small cylinders together with the large ones, sup- 
press case (a) in the proof of Step 3, and avoid any reference to Lemma 2.7 
(of course, Lemma 2.7 is still valid in the presence of a small enough 2, but 
we do not want to dig that deep into the proof). 

In order to prove the second bound (6.18), we notice that ~%.(y) is dif- 
ferentiable because both wh,(y) and Zh~.'"(~, _+ ) (Lemma 6.6) are. Moreover, 

d d Zh;""(~, S) 
~-~ ~%(Y) = ff'h~(Y) ~-~ log Z/,;..k()7 ' S) 

~ h ; , .  n n .  S =wh~.(y)[E~ (r .Q; )--E~'k(~o(0)l127"s)] 

By L e m m a  6.7, 

d G,~(~') 
�9 < ~ ( n + k + l ) e  -/jI~=L~'~/2 

~< EL(y) + 2kin, x + 1 ] e-/~l;t zt~,~/2 ~< e--#l~;ILO,~/3 
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Let now V be a simply connected finite volume containing the origin. We 
have to prove (6.19). Since 

sup ff22 I-I C'/,~(?) 
FeC,*(V.k )  121 <).0 } ,~F 

~< E E sup d ,~%.(),) I-[ 
r~c,:(V,k) y~r I:.i<~.o d2 r'~r\{r} 

Z sup d '~,,,()'). Z l-'[ 
),EC(l,",k) IXl <20 F~C,*,.(I:,k) ) " ~ F \ { r }  

),E C(V,k) 

then the quantity 

~T'h~( 7 ) 

r 

E Z ~',,~(y) 
FeC,*(V,k )  } ,~F 

can be differentiated term by term, and a similar computation shows that 

_ d 
d log Zh;"k(V) = k +-'~ log 2k( V, Wh:) = k + 

d2 

where 

d 
gv(7, 2) ~-~ ff%.(7) 

),E C{ V,k) 

Because of (6.17) 
c=  1/2) and obtain 

gv(7, 2) = (zh"'k(V))-' 

we can 

E I] ,T,,,,.(~,) 
I'6C,~|V,k) r'~ r\{r} 

= (z""'~(v)) -' 2 I-[ ,~',,,.(y) 
Fe:CL*~(IZ, k) y ' e l "  
F r , [ ' , ' ] = O  

use a cluster expansion (Theorem4.4 with 

log gv(y, 2)= 
~ C(V,k)  

r  

~T(r ,v,,~)- F, ~T(r c,,,,) 
~ C{ V.k ) 

= -  E 
c c  C(V,k) 

,~ c~ [},] = 0  
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6.3. 

Cesi and Martinelli 

Proof  of Coro l la ry  6.2 

If A = Q N  with N,(h)<~N~Kr(fl, h), then, by Proposition 3.2, 

IE~'~'q~(O)-E~,*'q~(O)l<~b,(fl, h, 2) V~b, ~b' e f2 

Assume now that N >  N(fl, h) and take another square A' inside A, given 
by A ' =  QN,, with N ' =  N- -2L2N/53-  2. Let 

n=sup{~(x)  v ~'(x):xeO+A} 

Then, by FKG and the Markov property 

]E~/q'q~(0)- E~/r ~< E~/"q~(0)- E~/'q~(0) 

If we let 

we have 

S• =S+(A,k+_I ,O+A ') 

E~,,"~o(0) h,,, <~EA (~,(O)z{~oES+})+E'~"I~(O)IS"+) 

(Z is the characteristic function). By Proposition A.1, we have 

E~,,"(q,(0) Sq_)~ sup E'~?~(0) 
V : A '  ~ V ~ A  

V c o n n e c t e d  a n d  
s i m p l y  c o n n e c t e d  

Moreover, by the Schwarz inequality, Proposition 3.2, and Theorem 6.1, 
we have 

E~"(~o(O) z{ ~o~ S + } ) ~ [E'~'"(~o(O)2) ] 'p- rt~ ~' ... . . .  t~, + ) ]  l/2 

<~ [ bl(fl, h, 2)] 1/2 e - l ( ' / 2 0 k 2 ) f l N  

On the other hand, we get 

E~,' l~o(0) t> E~ t(q,(0) I S'L )/~,' l(S'- ) 
>>. ( 1 - e -Ic/I~ sup E/~;kq~(0) 

V : A '  ~ V ~ A  
l F c o n n e c t e d  a n d  

s i m p l y  c o n n e c t e d  

By FKG and Proposition 3.5, 

E'~k~'(0) ~< E~,;+ "Pl'%,(0) ~< k + 2 

for all simply connected V c c  Z 2 
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Furthermore, by Corollary 6.5, if V is a simply connected finite volume 
such that A ' c  V, 

IE'bk~o(O) -- E~,,k~o(O)l ~< e-, ' / 's)P N' < e-,I/IOO)# N 

In this way we have found 

IE%.~o(O) - E~/*'~o(O)l 

~< e-(  ~/)oo)aN + { k + 2 + [bl(fl, h, 2)] i/2} e-(r 

<~ C(fl, h) e -(c/'-~ I 

7. WEAK MIX ING AND UNIQUENESS OF THE GIBBS 
MEASURE FOR h~h~,(,8) 

An important consequence of Corollary 6.2 is the weak mixing 
property discussed in refs. 17 and 18, which in turn implies the uniqueness 
of the Gibbs measure. 

In order to state it we first need one additional definition. We will say 
that a set A c c  7/2 is h-admissible if for each x ~ A there exists a square 
QN, + Y of side N~(h)= 1_8/17 + l_J contained in A such that x e QN,. Then 
we have: 

P r o p o s i t i o n  7.1 (Weak mixing). Let fl be large enough and 
h ~ (h*(fl), h~_t(fl)), with 1 ~<k ~<kma x = [ e'~176 Then there exists C(fl, h) 
such that for each h-admissible finite volume A and for each A = A 

sup sup [p~i~(A)--I~%'~'(A)[~C(p,h) ~ e .... o, pJ,)dt.,-.o.~) 
t,b,q.,' ~g2 A~F,j x~,..4 

where mo(fl, h) = fl(/lOk z. 

Proos Using the coupling v~ '~'r defined in Section 1.2 between the 
two Gibbs measures/t~ 'r 'r we write 

I~*(A) =~&'IA)[  

~<max{ ~" v~'q"r162 ~ v~'~"r ~o')} 
~oEA,t ,o '~A ~ r  ~ A  

h, tl, ~< y'  supv A l(cp(x):~cp'(x)) (7.1) 
X E A I  rt 
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h,,, J is above the diagonal, Since the coupling measure v A 

v']."-l(q,(x) > ~o'(x)) = y~ v~-". ' (q,(x)=k,  ~o'(x) <k) 
k 

<. Y. v~'"" l( q,(x) >1 k, ~o'(x) < k) 
k 

~ Z  r h, rt, LV.~ I(q~(x)>~k)-v~'~l(~o'(x)>~k)] 
k 

= E~'"q~(x) -- E~"q~(x) (7.2) 

Let us now first suppose that d(x, OA)>1 N](h) [see (6.1)] and let Q(x) be 
the largest square centered at x and contained in A. Then we use (1.7) and 
Corollary 6.2 to get 

sup E~'"9(x) -- E~ lq~(x) 
t !  

~< sup IE~ .6o(x ) - -E~ i l cp (x ) l  < C(fl, h) e -"'~ (7.3) 

If instead d(x, OA)<Ndh) ,  we use the fact that the set A is h-admissible 
and Proposit ion 3.2, and obtain 

supE~"~p(x)-E~i'cp(x)<<.supE~"~p(x)<~b,(fl, h, 1) (7.4) 
f /  n 

Clearly (7.1)-(7.4) prove our statement provided we redefine Off,  h) in a 
suitable way. I 

We can now prove that if,6' and h are as in the previous proposition, 
then there is a unique Gibbs measure for the interaction (1.1). Assume in 
fact that /z]  and/t_, are both Gibbs measures for such an interaction. Let 
V ~ c  Z 2 and X e  Fv.  Then, by definition of  Gibbs measure, we have for all 
squares A = QN with N>~N,(h) such that A ~ V 

[j/I(X)_~L2(X)[~ f /~,(dcp) p2(d~o,) lp~(X)_p~A'(X)[ <~ C iVl e ..... ~,v.~,,, 
x . O  

The argument is completed by letting N go to co. 

8. A C O M M E N T  ON THE COMPLETENESS OF THE PHASE 
D I A G R A M  

As we remarked after the statement of  Theorem 1.1, using the 
techniques developed in ref. 21, one can prove that if h=h*(fl)  with 
1 ~< k ~< k ...... then 
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where 

all translation-&variant Gibbs measures are 
convex comb&ations o f  lt k and lt k + l 

(8.1) 

p" = weak l 'm " l ltQ~, n = k , k + l  (8.2) 
N ~ ,~c 

[fl large enough and h =h*(f l )  have been chosen]. Unfortunately, ref. 21 
deals with systems of random variables ~0(x) which can take only a finite 
number of values. Thus if one can show that (1) the results of ref. 21 can 
be applied to our model, and (2) k and k + 1 are the only stable values in 
the sense of Zahradnik, then (8.1) would follow from Corollary 3.2 in 
ref. 21. 

We claim here that Zahradnik's theory can be used in our case thanks 
to the following facts: 

�9 In ref. 21, with the exception of Section 3.2, one never takes into 
account the boundary term in the Hamiltonian. For this reason the only 
problem caused by having an infinite number of values for rp(x) is due to 
the following: the basic assumption in ref. 21 is that contours (we are 
talking of Zahradnik's contours and in the rest of this discussion we use 
Zahradnik's notation) have a weight which is bounded by an exponential 
of the volume of their support 

weight o fFq  = exp[ - cib(Fq)] ~<exp(--r [supp Fq[) (8.3) 

for some large enough r. This bound is clearly ineffectual when one has to 
sum over an infinite number of contours with the same support. But it is 
not difficult to realize that all results in ref. 21 (except those in Section 3.2) 
are still valid if one drops the assumption of a finite single spin state space 
and replaces the above condition with 

y" e-*~rq~e-~l~N VA cc7 /2  (8.4) 
F q  : s u p p  F q  = A 

(8.4) can be easily verified in our case. 

�9 In Section 3.2 of ref. 21 the boundedness of the interaction (which 
we do not have) is used to prove Theorem 3.2. This theorem implies that 
the expectation "of the number of unstable pohTts in a volume A is of the 
order of the boundary of A. Showing that the number of unstable points 
grows like [A[ ~ with ~ <  1 is, in turn, the key ingredient for proving the 
main result, namely Corollary 3.2, which says that every translation- 
invariant Gibbs measure is a convex combination of those Gibbs measures 
given by "stable" boundary conditions. 
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Let then XA(cp) be the number of x e A  such that x is A-unstable for 
cp. We now sketch how to prove that, if A = QN and A = Qu+4, then for 
all N large enough 

sup E~(XA) ~< 2N s/3 (8.5) 

(8.5) is enough to prove Corollary 3.2 of ref. 21. To get (8.5) we are going 
to use the fact that, on OA, thanks to Proposition 3.2, the configuration is 
likely to stay below say x /~ .  Let A ' =  QN+,_, and consider the event 

F= {~o e f2 : ~p(x)~< v /NYxeOz l }  

Then, 

E~(XA) ~< E~( X A [ F) + [At/t~(F ~) 

Then, by Proposition 3.2 and the Chebyshev inequality, we have 

C tz~a(F C) < IOA[ b'(flNh' 4) ~< 

As for the other term, we get 

E](XA IF) <-< N ' "  + N "-~]( X~, >1 N~/~ I F)  

and, using (1.7), 

la~(XA >i Ns/3IF) < sup p],(XA >1 N 5/3) 
~o~F 

Moreover, we notice that for each q~, r/~ 

H~,(q)-- ~ [~o(y)-ll<~H~,(q)<~H~,(~l)+ Z [~o(y)- 1[ 
xcA',),E[A')" x e A ' , . V ~  ( A ' }  c 

I x  - -  3'[ = 1 I x  - -  y [  = 1 

Thus, if ~o e F, taking into account that XA is FA,-measurabte, we have 

lt~,( XA >i N 5/3) < e3ZP'N+ 2)'/-NI.t'a,( XA >t N 5/3) 

In this way we have gotten rid of the arbitrary boundary conditions. So we 
can use Proposition 3.1 of ref. 21 to estimate the last term, and we get 

p~a(X a >1 N s/3 [ F) <~ exp(c'N 3n) exp( -- ~N 5/3 + c"N 3/z) 

for some a(fl, h ) > 0 ,  c"(fl, h)>0.  We have thus obtained 

Eac(Xa) ~< oN+ N 5/3 + N 2 exp(c'N 3/2) exp( --otN sis + c"N 3/2) <~ 2N s/3 
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if N is large enough. This proves (8.5) and by consequence Corollary 3.2 
of ref. 21. Hence every translation-invariant Gibbs measure is a convex 
combination of the Gibbs measure produced by "stable" boundary condi- 
tions. So the last thing to observe in order to prove (8.1) is that k and k + 1 
are the only stable values in the sense of Zahradnik. Assume in fact that 
there exists another 17 ~ {k, k + 1} such that n is stable. By Corollary 1.7 of 
ref. 21 there should be a Gibbs state which is a perturbation of the con- 
figuration q~- n. But this is impossible because, by FKG,  Corollary 6.2, 
and Proposition 3.6, one easily gets, for N large enough, 

l E~u~o(0) ~< k + 1 + l__ ~ k - r ~ <  ~ V ~  

So the only values that can be stable are k and k + 1. If only one of them, 
say k, is stable, then we should have/~k=/tk+l .  But this again cannot be, 
because of, for instance, Corollary 4.3. 

A P P E N D I X  

Proposition A.1. Let A = Q,v and let A' be a connected subset of 
A such that d(A c, A')/> 2. Consider the event 

Y= ~'q~eg2A" there exists a p a t h  (x, ..... x ,)  f romaA t o 0 + A ' ]  

l such that q~(xi) > k for all i J 

Then, for any positive event X e  FA,, for all ~ e/2, we have 

/~;~'( Xl r") <~ sup ,u/;;k(X) 
I / : A  ' ~ V ~  A 

V connected and 
simply connected 

Proof. This is a more or less straightforward consequence of F K G  
and the Markov properties of our Gibbs measures, but its proof requires 
some care, so we give the details. 

Given A c c  Z 2, we define ext(A) as the unique infinite connected com- 
ponent of A" and we let int(A) = A"\ext(A). If ~0 e y c ,  then there must exist 
V such that: 

1. A' c Vc(A\OA) .  

2. V is conhected and simply connected. 

3. ~o(y)<~kforally60+V. 

Furthermore, there is a unique "largest" V among those satisfying 1-3, 
meaning a unique V for which: 

4. V is not a proper subset of any U which also satisfies 1-3. 
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If we assume in fact that  V~ and V z both  satisfy 1-4 with V~ :/: V 2, 
then it will follow that  

U =  V, w V2 w int( V~ w V2) 

satisfies 1-3, which is a contradiction, because either V~ or V, is a proper  
subset of U. 

Clearly A ' c  U c  (A\OA). Since V~, V2 have a nonempty  intersection 
(they both contain A'),  U is connected. Moreover ,  U"=ext (V~ w V2), so 
U" is connected, which implies that  U is simply connected. To  prove 3 we 
observe that  

0 + int( V1 w 1I,_) c Vi w V2 

and, as a consequence, 

O+ U=O+ Uk( V~ u V2)cO+( V, vo V2)cO+ V, wO+ V2 

In this way we have shown that, given ~o e Y", there is a unique set V(q~) 
such that  1-4 hold. So, if we let G be the set of all V's which satisfy 1 and 
2, we can write Y'" as a union of disjoint events 

Y"= U Y"( v) 
|"E G 

where 

yc(V) = { rp e ~.~, : V(cp)= V} 

The reason for using the "largest" V is that Y"(V) ~ F,,.,, which implies for 
any event X 

lfll;~'(Xn Y"(V)) = p'/;~'(X) X{ q~ e Y"( II)} (A.1) 

So, if X is a positive event in FA,, using (Al.1), (1.7), the Markov  property,  
and the F K G  inequality, we get 

l,~;~(xn Y")= y, ;,~i~(Xn Y"(v)) 
l i e  G 

= y" Y. /,~i~'(cp)/t"i.q'(XnY"(V)) 
I / ~ G  ~oEE2 

~ p~i~'( Y"(V)) sup lfl;;)'(X) 
V ~ G  ~o~ } ~ I V )  

<~ ~ /,~ir Y"( V)) F,';:.~'(X ") ~p~e , (y , . )  I 
V ~ G  

sup fliCk(X) 

V connected and 
simply connected 
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Proposition A.2. Let fl be large enough. Let V c c  y 2  and let Y be 
a set of finite collections {r/} ~ CB. Assume that: 

(i) For each {r h ..... q,} e r there exists {x~ ..... x,,} ~ V with 
I{xl ..... x,,}[ = n  and such that r]~x~ for all i. 

(ii) For each {r/} e Yand  for each r/E {r/} we have I'll >~M. 

Then 

~, 1-I e-Plql ~< exp[ [ Vl e -,3/4~/JM] 
{,1} ~ r ,7 ~ {,1} 

R e m a r k .  Hypothesis (i) holds in the following two particular cases: 

1. The {11} are the bases {~} of a compatible or weakly compatible 
collection {7} of cylinders such that ~ c  V for each 7 ~ {7}. 

2. The {q} have pairwise disjoint interiors and ,7c~ V ~  for all 

Proof. Remembering that there exists a fixed constant K such that 
the number of t/'s of length l such that tT~x is bounded by K ~, we get 

I vI 
2 H e-#l~'= Z Z 1-[ e-/' 'i 

{ q }  ~ Y q e { t l l  .,,'=0 { . t i le  Y n E { q  I 
I|~111 = s  

Y Z 2 
: , ' = 0  { .v l . . . . .xs}  ~ V i =  I q~Cl3:  

t i~ xi. lql >~ M 

<-/~__o([VI)(t~=~ Kte-t~') ~< __~o([V[) [e-'3/4'/~M] s 

= [1 +e-~3/4~a~] Ivl <~exp[lV[ e -~3/41aM] | 

Proposition A.3. Let A = QN and U =  A. If 

then 

16Un •AI/> 916UI 

and 

Proof. 

24 IUI~>~IAI and IUI>~I6UIN 

Let V=A\U. Since 

6 U\6A = 6 V\6A 

(6Uc~ 6V) w (6Vc~ OA) = ~A 
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we get 

l aUI -2  [SUc~JAI = I~VI- IJAI (m.2) 

If laUc~riAI >>. 9 I~UI, then aU must intersect all four sides ofaA, so 

15 UI/> 4N 

By consequence, using (A.2), 

16Vl~<lauI ,8 - rdlSUI + laAI ~< ~ IgAI 

which implies 

(i) 

(ii) 

(iii) 

Then 

I V l ~ ( k l a V I ) 2 ~ N  2 

The second statement follows from the first and the inequality 

15UI~ISUcaSA[<~ ~ N  | 

P r o p o s i t i o n  A.4. Let A=QN,  A ' c A .  Let U = A  be such that: 

IUI > ( I - e - ' )  IAI for some e>0.  
There exists a ,-path from A' to OA which does not intersect U. 

2eN <...d(A', 6A). 

I~UI >~ I~AI +d(A', 5A)-  l i e N -  11 

Proof. For further convenience we translate QN in such a way that 
it coincides with the square 

{x=  (x, ,  xz) EZ'-:I ~ x i ~ N  ~ i =  1, 2} 

Let then L=N--21 ,  with l = l e N +  l_J, and let A = Q L + ( I , I ) ,  so that A 
and .4 have the same center. 

For each e e 5/1, we denote by e' the unique dual edge in 5A such that 
d(e, e') = l. If now (x, ..... x~) is the unique (straight) path of length l such 
that d(x], e)= d(x/, e') = I/2, we set (see Fig. 5) 

S(e) = {x, ..... x/} 

Because of hypothesis (i) we have 

# {eeSA:S(e)  c~ U= f2~} <<. l (A.3) 
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A J [ ]  S(e) 

x NIT 
i 

~ OYl  

~NNNNNN",NNN"~ ~N~NNN" ~ 
g 

d �9 Yp 

Fig. 5. Proof of Proposition A.4. 

On the other hand, for each S(e) which intersects U there is at least one 
edge [ x .  xi+ 1]* which belongs to 5U [by  X/+l we mean  the unique xeA'"  
with d(xl, xl+ i) = 1 ]. 

By (ii) there is a . -pa th  (Yt ..... yq) such that  Yl eA' ,  yqeOA, and 

y i r  i = 1  ..... q 

Let 

p = min{ i = 1 ..... q : Yi e OA} 

in such a way that Yi e .,T for each i = 1 ..... p. We can assume that  yp belongs 
to the bo t tom side 0, .4 of  A, i.e., that  

ypeOl f f  = { x = ( x  l, Xa) e ff:x2 = / +  1} 

Let n = d(yl ,  01,~) + 1, and, for i = 1 ..... n, let 

Ti = { x = ( x , ,  x2) EA:x2 = l + i }  

Each T~ must  intersect at least one yj  with j ~< p. Moreover ,  yj r U, so either 
T~c~ U = ~  or there is one edge [ x , y ] * e S U  such that  {x,y}  c Ti. But 
again, because of (i), 

# { i = 1  ..... n : T i n U = ~ } ~ < l  

Together  with (A.3) this implies 

16uI >/10f t [ - l+n- l=  IOal + n -  10l~> 16AI +d(A', OA)- l i e N -  11 I 
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